SUPPORTERS

Verein zur Durchführung der International Winterschool on Electronic Properties of Novel Materials Verein zur Förderung der Internationalen Winterschulen in Kirchberg Austria

PATRONAGE

Ewald Haller Bürgermeister von Kirchberg

SPONSORS

Applied Nanofluorescence,
3701 Kirby Drive, Suite 994, Houston, TX 77098, USA
HORIBA Jobin Yvon GmbH,
Neuhofstrasse 9, 64625 Bensheim, Germany
Wiley-VCH Verlag GmbH & Co. KGaA,
Boschstraße 12, 69469 Weinheim, Germany
SINEUROP Nanotech GmbH,
Kernerstr. 34, 70182 Stuttgart, Germany
L.O.T.-Oriel GmbH,
Im Tiefen See 58, 64293 Darmstadt, Germany
NACALAI TESQUE, INC.,
Nijo Karasuma, Nakagyo-ku Kyoto, 604-0855 Japan

Financial assistance from the sponsors and supporters is greatly acknowledged.

Dear Friend:

Welcome to the $23^{\rm rd}$ International Winterschool on: Electronic Properties of Novel Materials: "Molecular nanostructures"

This Winterschool is a sequel of twenty-two previous meetings held in Kirchberg in the last decades on problems related to the electronic structure of novel materials. The idea of the meeting is to bring together experienced scientists from universities and industry with advanced students working in the selected field and thus create a fruitful and prosperous community for the exchange of scientific information and personal experience. It is a tradition of the Winterschools in Kirchberg that this exchange is not restricted to the lectures and poster sessions but occurs throughout the whole week.

The Winterschool is dedicated to molecular nanostructures as a new class of materials. Like the previous Winterschools it runs on an informal level.

If you have any questions concerning the organization and the program, come and see one of us or one of the colleagues involved in the preparation of the meeting. These persons are:

Janina Maultzsch program

Matthias Müller accommodation, sponsoring

Nils Rosenkranz registration, finance

Marcel Mohr video transfer and recording, internet

Hagen Telg general assistance

Harald Scheel receipts, technical assistance

Dirk Heinrich technical assistance

Norman Tschirner computer, internet, e-payment

Also the managers of the hotel, Frau Mayer and her son Herr Mayer, and their staff promised to help us wherever they can. We want to acknowledge their help and also that of Sabine Morgner in the organization of the IWEPNM 2009.

We wish you an interesting, successful, and pleasant week in Kirchberg. We are very much looking forward to your contributions at the event.

Sincerely yours,

Christian, Peter, Hans, and Siegmar

Chairmen

- C. Thomsen (Berlin)
- P. Dinse (Darmstadt)
- H. Kuzmany (Vienna)
- S. Roth (Stuttgart)

Program Committee

A. Bachtold (ES) F. Mauri (FR) P. Dinse (DE) M. Mehring (DE) M. Dresselhaus (US) K. S. Novoselov (UK) S. Fan (CN) E. Obraztsova (RU) J. E. Fischer (US) Th. Pichler (AT) L. Forro (CH) J. Robertson (UK) T. F. Heinz (US) A. Rubio (ES) A. Hirsch (DE) S. Roth (DE) S. Iijima (JP) P. Rudolf (NL) H. Kataura (JP) C. Schönenberger (CH) P. Kouwenhoven (NL) N. Shinohara (JP) H. W. Kroto (UK) Z. K. Tang (CN) H. Kuzmany (AT) C. Thomsen (DE) Y. H. Lee (KR) A. Zettl (US) D. Zhu (CN) A. Loiseau (FR)

Scope

This winterschool will provide a platform for reviewing and discussing new developments in the field of electronic properties of molecular nanostructures and their applications. Subjects included are: \bullet Materials science of graphene and nanoribbons \bullet Carbon nanotube optics and electronics \bullet Carbon nanotube growth and selection \bullet Single-molecule experiments \bullet Applications of molecular nanostructures \bullet Theory of molecular nanostructures \bullet Biomolecule physics and applications \bullet Nanostructure spintronics

INFORMATION FOR PARTICIPANTS

Time and location

The IWEPNM 2009 starts on Saturday, 7 March, evening, at the hotel Sonnalp in Kirchberg/Tirol, Austria and extends to Saturday, 14 March, breakfast. There will be a reception party on 7 March, after dinner, and a farewell party including dinner on Friday, 13 March.

Transport

The hotel Sonnalp can be reached by private car from downtown Kirchberg by driving about one kilometer towards Aschau. Participants arriving at the railway station in Kirchberg or Kitzbühel should hire a taxi to get to the hotel.

Addresses

The address of the Winterschool is:

IWEPNM 2009, Hotel Sonnalp, A-6365 Kirchberg/Tirol, Austria

Tel: ++43 5357 27410, Fax: ++43 5357 2741 200

e-mail: info@hotelsonnalp.info, Web: www.tiscover.at/sonnalp.parkhotel

All questions concerning the IWEPNM 2009 should be directed to:

Prof. Christian Thomsen, Institut für Festkörperphysik,

Technische Universität Berlin

Hardenbergstr. 36, 10623 Berlin, Germany

Tel: +49-(0)30-31423187, Fax: +49-(0)30-31427705

email: iwepnm-info@physik.tu-berlin.de

Web: http://www.iwepnm.org

Participation

Participation at the IWEPNM 2009 is possible for students and scientists working in the field covered by the scope of the meeting. Because of the limited space the participation requires prearranged acceptance by the organizers.

Contributions

All oral contributions will be presented in the big seminar room of the Hotel Sonnalp. Participants are invited to contribute comments to research and tutorial lectures where 10 minutes for discussion are reserved after each lecture. Video projection will be available for presentations. Presentation of video films needs prearranged confirmation. Invited speakers please test the video projection with the technical staff at the latest a few minutes before your session begins. Posters will be presented in the hall of the seminar room.

During the conference

If you want to buy a ticket for the ski lifts in the Kirchberg/Kitzbühel area, please ask at the hotel reception on Saturday evening. Internet connection through WLAN is available for all participants, even if they are not accommodated at the Hotel Sonnalp. Please check at the front desk.

Proceedings

The contributions to the IWEPNM 2009 will be published in physica status solidi. The expected date for the appearance of the proceedings is September 2009. Contributions can only be published if they arrive before the 30 April. Online submission will be used, which you can find under the following address: http://conferences.wiley-vch.de/v3. The manuscripts will be reviewed within the following weeks. Acceptance of a contribution for presentation at the Winterschool does not automatically include acceptance for publication in the proceedings.

Manuscript preparation

Make sure to refer to the current version of the instructions for authors: http://www3.interscience.wiley.com/cgi-bin/jabout/40000761/instructions.html In particular, the following requirements should be met:

- Your manuscript should be written using our Word
 http://www.wiley-vch.de/vch/journals/2231/public/pss_abc_2008_word.zip
 or LaTeX
 http://www.wiley-vch.de/vch/journals/2231/public/pss_abc_2008_latex.zip
 template.
- Relevant PACS numbers (a maximum of six codes) must be given, see the full and most recent classification system (PACS 2008) at http://www.aip.org/pacs. Always use the complete form, such as 32.50.+i, 71.70.Ej. The page limit for invited oral talks is 6 for poster contributions 4 pages. Submission deadline is April 30, 2009.

Manuscript submission

For online submission please go to http://conferences.wiley-vch.de/v3. Your login details will be emailed to you by the conference organizers in due time. Select PHYSICA STATUS SOLIDI as the journal and choose IWEPNM 2009 from the list of projects. Once you there, click on "Create manuscript" on the left side of the screen and follow the instructions.

File names

Please use only Western letters for the file name, and only lower-case letters for the format extension. Please use clear, self-explaining file names.

Example: smith_version2.doc. Please note that after submitting a manuscript, you can no longer modify it.

IWEPNM 2009 CHAIRPERSONS FOR THE ORAL SESSIONS

The following participants are asked to support the program of the Winterschool by serving as chairperson:

Sunday, 8.03.	morning morning, after coffee break evening	Mehring Loiseau Pichler
Monday, 9.03.	morning morning, after coffee break evening	Kuzmany Saito, R. Kaiser, A.
Tuesday, 10.03.	morning morning, after coffee break evening	Novoselov Maruyama Obraztsova
Wednesday, 11.03.	morning morning, after coffee break evening	Mauri Kürti Hartschuh
Thursday, 12.03.	morning morning, after coffee break evening	Robertson Roth Forro
Friday, 13.03.	morning morning, after coffee break evening	Bockrath Dinse Kamaras

Chairpersons are asked to start the sessions in time and **to terminate the lectures according to schedule**. The discussions may be extended up to 5 minutes beyond the schedule.

Chairpersons please remember: You have to ask for questions from the side-room (bar)!

Chairpersons please remember: For questions from the main room please ask the speaker to repeat the question. The chairperson's microphone should only be passed on to questions from the first row.

If there are any objections to the suggested list of chairpersons, please let us know at the beginning of the Winterschool.

We acknowledge your support.

The Organizers

Final Program

	Sunday 8 March	Monday 9 March	Tuesday 10 March	Wednesday 11 March	Thursday 12 March	Friday 13 March
Topics	Synthesis and selection of carbon nanotubes	Graphene I and quantum dots	Graphene II and theory of carbon nanotubes	Optics of carbon nanotubes	Applications of carbon nanotubes	Transport and magnetic properties of carbon nanotubes
8:30	High efficiency metal- semiconductor separation of SWNTs by using agarose gel KATAURA	Spin injection, transport and manipulation in graphene field effect transistors. VAN WEES	Graphene mechanics, tribology, Raman spectra under strain, and NEMS HONE	Understanding environmental effects on the electronic and vibrational excitations and dynamics in carbon nanotubes PEREBEINOS	Nanotube applications:	Highly efficient electron- hole pair generation via impact ionization in CNT p-n junction photodiodes GABOR
9:00	In situ electron micros- copy observations on CNTs and related structures during deformations, growth and transformations JIN		Doping effects in pristine and epitaxial graphene KERN			Nuclear spins in nanostructures LOSS
9:30	Electronic properties of pristine and doped carbon nanotubes SAITO, S.	Graphene: the magic of flat carbon NOVOSELOV	Microscopic studies of graphene MEYER	Exciton states and phonon softening phenomena in SWCNTs SAITO, R.	Progress toward negative index lenses CARROLL	Pumping single electrons with SWNT SIEGLE
10:00	Coffee break					
10:30	Preparation, characterization, and application of monodisperse single- and double-walled CNTs HERSAM	electron-electron and	Optical spectroscopy of single and few-layer graphene HEINZ	Near-field optical investigations of individual single-walled carbon nanotubes HARTSCHUH	pristine and doped carbon nanotubes: A tuneable meta material	Electrically detected coherent spin control in carbon based semiconductors BÖHME
11:00	Separating SWNTs by length, electronic property and chiral index KAPPES	Electron-phonon coupling in graphene ATTACALITE	Scanning tunneling spectroscopy and transport measurements in suspended graphene ANDREI		In vitro effects of carbon based materials BRUINICK	Electron spin resonance of Luttinger liquids and single- wall carbon nanotubes DORA
11:30	Low-voltage high resolution TEM of carbon nanomaterials WARNER	structure, and Clar's	Raman spectroscopy of graphene under uniaxial strain FERRARI	Disorder in sp² nano- carbons: doping, ion bombardment and substrat interaction JORIO	Doping strategy of carbon nanotubes LEE, Y.H.	Doping of single-walled carbon nanotubes with phosphorous atoms KRSTIC

12:00-17:00	Mini worksshops					
17:00 - 18:30	Dinner			17:00		
18:30	tube chemistry inside	Probing diffusive and ballistic transport in graphene FUHRER	Classification and diffraction of quasi one- dimensional crystals DAMNJANOVIC	Spectral features due to dark exciton in photoluminescence map of SWCNTs MARUYAMA	Advances in the chemistry and applications of carbon nanomaterials HADDON	Bile-salt solubilization offers high resolution and selectivity for the spectroscopy of SWCNTs GOOVAERTS
19:00	Carbon nanomaterials for advanced applications SCHARFF	Graphene quantum dots STAMPFER		Linear optical spectra and relaxation dynamics in SWCNTs MALIC	Synthesis and characterisation of ultra-thin conducting carbon films DUESBERG	17:30 Two-phonon Raman spectroscopy of one-, two-layered graphene and CNTs OBRAZTSOVA
19:30	for possible thermoelectric energy converting	Molecular states of correlated electrons in quantum dots RONTANI	Electrodynamics of carbon nanotubes: principles, device applications and open questions MAKSIMENKO	Optical spectroscopy of individual single-walled carbon nanotubes LOUNIS	Sensing mechanism behind the metal-decorated SWNT- FETs LEE, J.O.	
20:00	Supramolecular nanostructures of a phthalocyanine-C60 fullerene conjugate TORRES	Poster I Monday	Poster II Tuesday	Resonant Raman of 0.3nm single-walled carbon nanotubes TANG	Poster III Thursday	Bauernbuffet Farewell
20:30		,	·		,	
Topics	Synthesis and selection of carbon nanotubes	Graphene I and quantum dots	Graphene II and theory of carbon nanotubes	Optics of carbon nanotubes	Applications of carbon nanotubes	Transport and magnetic properties of carbon nanotubes
	Sunday 8 March	Monday 9 March	Tuesday 10 March	Wednesday 11 March	Thursday 12 March	Friday 13 March

PROGRAM

AND

ABSTRACTS

status solidi

Solid State at Its Best

2009. Volume 206, 12 issues. Print ISSN 0031-8965 • Online ISSN 1521-396X Testura Article

Properties and segment of the gene entiting
N-bland enteredate, increasing
N-bland, C. Nota, and N. Worsig, p. 259

WWILEY-VCH

2009. Volume 246, 12 issues. Print ISSN 0370-1972 • Online ISSN 1521-3951

2009. Volume 6, 12 issues. Print ISSN 1610-1634 • Online ISSN 1610-1642

Impact Factor*: 1.071 Now listed in ISI Web of Science (Conference Proceedings Citation Index)

Impact Factor*: 1.214

> www.pss-a.com

Special Issues in 2009

■ Engineering of functional interfaces

*Thomson Reuters Journal Citation Report 2007

- Silicon carbide research and applications
- Carbon electronics

> www.pss-b.com

Special Issues in 2009

- Photoemission and synchrotron radiation applications
- Chalcogenides and phase-change materials
- Molecular nanostructures

> www.pss-c.com

Special Issues in 2009

- Excitonic properties in condensed matter
- Nitride semiconductors
- Optical, optoelectronic and photonic materials

Increased frequency from 6 to 9 issues!

2009. Volume 3, 9 issues.
Print ISSN 1862-6254 • Online ISSN 1862-6270

> www.pss-rapid.com

With a first Immediacy Index* of 0.495 pss RRL is the most highly cited journal publishing exclusively Letter articles in condensed matter physics.

pss RRL is the fastest peer-reviewed publication medium in solid state physics!

The journal offers extremely fast publication times: typically are less than 14 days from submission to online publication. This is definitely a world record for Letter journals in solid state physics! Double peer-review by independent referees guarantees strict quality standards.

For subscription details please contact Wiley Customer Service:

cs-journals@wiley.com (North and South America)
service@wiley-vch.de (Germany / Austria / Switzerland)
cs-journals@wiley.co.uk (All other regions)

6900902_b

Synthesis and selection of carbon nanotubes

8:30 – 9:00	H. Kataura, JP High efficiency metal-semiconductor separation of single- wall carbon nanotubes by using agarose gel
9:00 – 9:30	C. Jin, JP In situ electron microscopy observations on CNT and related structures during deformations, growth and transformations
9:30 – 10:00	S. Saito, JP Electronic properties of pristine and doped carbon nanotubes
10:00 – 10:30	Coffee break
10:30 – 11:00	M. C. Hersam, US Preparation, characterization, and application of monodisperse single-walled and double-walled carbon nanotubes
11:00 – 11:30	M. M. Kappes, DE Separating SWNTs by length, electronic property and chiral index
11:30 – 12:00	J. H. Warner, UK Low-voltage high resolution TEM of carbon nanomaterials
12:00 – 17:00 17:00 – 18:30	Mini Workshops Dinner
18:30 – 19:00	H. Shiozawa, UK Excitement of nano-test tube chemistry inside SWNTs
19:00 – 19:30	P. Scharff, DE Carbon nanomaterials for advanced applications
19:30 – 20:00	Y. W. Park, KR CNT-polymer composites for possible thermoelectric energy converting materials
20:00 – 20:30	T. Torres, ES Supramolecular nanostructures of a phthalocyanine C60 fullerene conjugate

Sunday, March 8

High efficiency metal-semiconductor separation of single-wall carbon nanotubes by using agarose gel

<u>H. Kataura</u>¹ T. Tanaka¹ Y. Miyata¹ S. Fujii¹ D. Nishide¹ K. Yanagi¹ Y. Feng² K. Matsuishi² Y. Maniwa³

¹JST, CREST, Nanotechnology Research Institute, AIST, Tsukuba, Japan

Metal-semiconductor separation is indispensable for practical applications of single-wall carbon nanotubes (SWCNTs), such as thin film transistors and transparent conducting films. After the great works by Arnold et al.[1], now we can obtain high-purity metallic and semiconducting SWCNTs by using density gradient ultracentrifugation. For the industrial application, however, we still have to reduce the time and cost of the separation. Recently, we found the agarose gel can separate SWCNTs-SDS solution into metallic and semiconducting phases without any special treatment[2]. This new method can separate SWCNTs with high purity, high efficiency, and totally low cost. In this presentation, we will show our recent progress in the separation and some device applications.

- 1. M.S. Arnold et al., Nat. Nanotechnol. 1 (2006) 60.
- 2. T. Tanaka et al., Appl. Phys. Express 1 (2008) 114001.

9:00

In situ electron microscopy observations on carbon nanotubes and related structures during deformations, growth and transformations

Chuanhong Jin¹ Kazu Suenaga¹ Sumio Iijima¹

 $\overline{\mbox{^{1}}}$ Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Investigating the physical and chemical properties of individual quantum objects has long been endeavored with the precise atomic configurations. Although the measurements of the transport and electronic properties of carbon nanotubes were previously performed in TEM, the real atomic resolution was not achieved in these experiments. In situ HR-TEM studies with a higher spatial resolution have been just made possible by the development of more stable specimen holder (Nanofactory) and the advancement of the electron optics in TEM based on the aberration correctors (CEOS). We will present here some examples of the in situ HR-TEM studies of carbon nanotubes: joining and growth behavior, migrations of the individual atomic defects (vacancies) at the elevated temperatures, catalytic growth of fullerenes, as well as formation of lip-lip networks.

The work presented here was partially supported by the CREST and the KAKEN-HI. Fellowships of the JSPS and the Balzan Foundation (through Meijo Univ) are also acknowledged.

²Institute of Materials Science, University of Tsukuba, Tsukuba, Japan

³Department of Physics, Tokyo Metropolitan University, Tokyo, Japan

Electronic properties of pristine and doped carbon nanotubes

Susumu Saito

Department of Physics, Tokyo Institute of Technology, Tokyo

Doping into semiconductor carbon nanotubes is of high interest from the view-point of their application as nanodevice materials as well as from the viewpoint of superconductivity with high transition temperatures to be realized in covalent-bond based materials with light elements. We study the electronic structure as well as the energetics of substitutionally B-doped carbon nanotubes in the framework of the density-functional theory. Results are discussed with emphasis on the importance of electron correlation which is pointed out to be of crucial importance in predicting so-called impurity levels in semiconductors in general. In addition to these doped carbon nanotubes, we report electronic properties of various thincarbon nanotubes including armchair and chiral nanotubes. Details of the electronic structure of thin nanotubes are highly important at present since the experimental purification of thin nanotubes is in progress in several groups. We point out that the geometry optimization turns out to be very important in predicting the electronic properties of thin carbon nanotubes.

10:30

Preparation, characterization, and application of monodisperse single-walled and double-walled carbon nanotubes

Mark C. Hersam

Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, IL 60208-3108, USA

Large-scale production of high purity carbon nanotubes has the potential to enable or improve many applications. Recently, we have developed a scalable and flexible technique for sorting single-walled carbon nanotubes (SWNTs) by their physical and electronic structure using density gradient ultracentrifugation (DGU). Diameter-sorted metallic SWNTs yield semi-transparent conductive films with tunable optical absorption. On the other hand, semiconducting SWNTs enable thin film transistors with high switching ratios and drive currents. Most recently, chiral surfactants have been utilized for DGU-based sorting of SWNT enantiomers. In all cases, analytical ultracentrifugation measurements allow the SWNT surfactant loading to be quantified and optimized for improved DGU sorting. This talk will also delineate DGU sorting of double-walled carbon nanotubes (DWNTs). Since DWNTs possess a buoyant density that is intermediate between SWNTs and multi-walled carbon nanotubes, a two-step DGU process has been developed for high purity DWNTs. DGU-sorted DWNTs enable characterization of the fundamental properties of DWNTs and yield high performance transparent conductive films.

Separating SWNTs by length, electronic property and chiral index

<u>Manfred M. Kappes</u>¹ Frank Hennrich¹ Sergei Lebedkin¹ Ninette Stürzl¹ Oliver Kiowski¹

¹Institut für Physikalische Chemie, Universität Karlsruhe and Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Germany

Density gradient ultracentrifugation, electrophoresis and selective dispersion have been used (sometimes in combination) to fractionate SWNTs according to length, electronic property and chiral index. The talk will address various associated mechanistic issues and will present spectroscopic measurements on resulting fractionated samples.

11:30

Low-voltage high resolution TEM of carbon nanomaterials

<u>Jamie H Warner</u>¹ Mark H. Rümmeli² Yasuhiro Ito¹ Bernd Büchner² Hisanori Shinohara³ G. Andrew D. Briggs¹

¹Department of Materials, University of Oxford, UK

²IFW Dresden, Germany

³Department of Chemistry, Nagoya University, Japan

The emergence of aberration-corrected low-voltage high resolution transmission electron microscopy opens many new exciting possibilities for examining the atomic structure of carbon nanomaterials. This enables the determination of the chirality of nanotubes, the orientation and edge termination of graphene sheets and their packing arrangement. Accelerating voltages of 80 kV lead to significant reduction in the knock-on damage to sp2 carbon atoms in graphene based nanomaterials such as fullerenes, nanotubes and graphene. I will present our latest findings that shed light on how electrons accelerated at 80 kV interact with carbon atoms and the new forms of damage that occur. We find 80 kV electron beam irradiation can lead to unique structural transformations that are not always detrimental. We track the evolution in real time with spatial resolution on the angstrom scale and temporal resolution down to 80 milliseconds. Our results involve examining graphene and few layer graphene sheets, SWNTs and DWNTs, and peapods (i.e fullerenes/metallofullerenes inside SWNTs).

Excitement of nano-test tube chemistry inside single-walled carbon nanotubes

<u>Hidetsugu Shiozawa</u>¹ S. Ravi P. Silva¹ Zheng Liu² Kazu Suenaga² Hiromichi Kataura² David Batchelor³ Christian Kramberger⁴ Thomas Pichler⁴

¹Advanced Technology Institute, University of Surrey, UK

The excitement of nano-test tube chemistry in single-walled carbon nanotubes is exemplified in our study on the growth of inner tubes from encapsulated molecules. Using different oragnometallic precursors we study the mechanism for the catalytic growth of carbon nanotubes. The structural and chemical status of encapsulated elements is identified from Raman, photoemission, core-level absorption spectroscopy and transmission electron microscopy. Electron doping through the 1D van Hove singularity of single-walled carbon nanotubes is obtained by using an organocerium compound as a precursor filling. From a resonance photoemission study we show that increased doping of the filled tubes greatly enhances the density of conduction electrons. Through electronic excitations from the carbon 1s core level to the 1D van Hove singularity of initial semiconducting tubes, we demonstrate that their increased density of conduction states leads to enhanced screening of the photo-excited core hole potential. This fact illustrates the importance of many body effects in understanding core level excitation process in carbon nanotubes.

²AIST, Japan

³Bessy II, Germany

⁴Faculty of Physics, University of Vienna, Austria

Carbon nanomaterials for advanced applications

Peter Scharff¹ Uwe Ritter¹ Svetlana Prylutska²

¹Chemie, Elektrochemie und Galvanotechnik, Ilmenau, Germany

²Kyiv National Shevchenko University, Kyiv, Ukraine

Discrete spherical carbon molecules offered a broad variety of possible reactions to the chemists, whereas the nanotubes stand out because of their unique physical properties. Exemplarily some new applications of carbon nanomaterials are demonstrated and the research focus in Ilmenau on these materials will be demonstrated. Chemically functionalized MWCNT arrays can work as ultra sensitive sensors for the detecting of chemical substances, for the detection of reactive gas molecules or specific biological targets. Charge transfer or small changes in the charge-environment of a nanotube can cause drastic changes to its electrical properties. The aim is using these nanomaterials as an electrical probe of chemical and biological interaction. Carbon nanotubes can be exited by light in the same way as fullerenes and the exiting energy can be transferred to other molecules with high efficiency, which is used in biological and medical applications. The biological effects of fullerene derivatives will be demonstrated by the generation of reactive oxygen species. The obtained experimental data allow us to consider these fullerene materials as potential agents for a photodynamic therapy.

CNT-polymer composites for possible thermoelectric energy converting materials

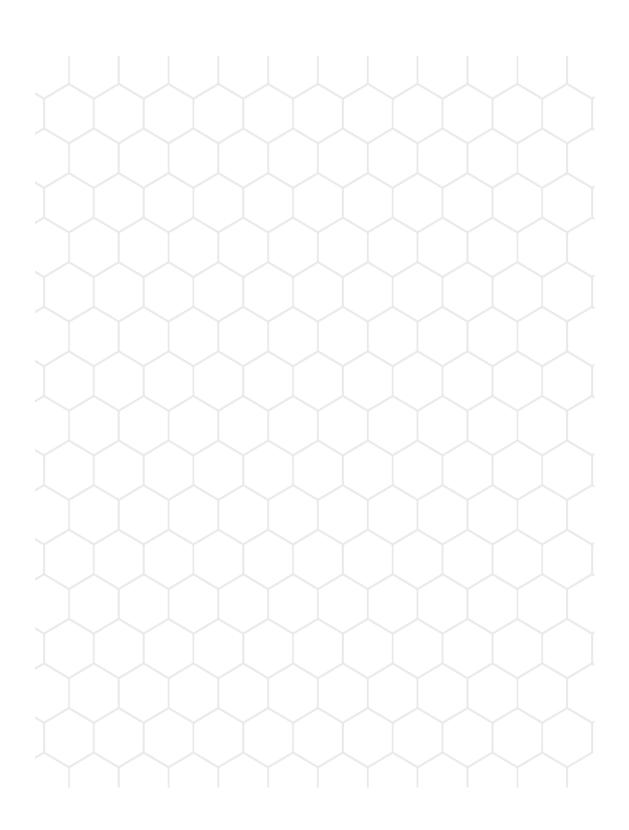
Yung Woo Park¹ Siegmar Roth²

¹Department of Physics and Astronomy, Seoul National University, Seoul

Thermoelectric power is a zero current transport coefficient defined as $S = \Delta V/\Delta T$. By applying temperature gradient to the system, electricity is generated. An energy converting device from thermal energy to electricity can be developed using the thermoelectricity. The figure of merit $ZT = TS2\sigma/\kappa$ is a measure of the efficiency of the thermoelectric energy convergence. Therefore, finding materials of high electrical conductivity (σ) , high thermoelectric power (S) and low thermal conductivity (κ) is the key issue for highly efficient thermoelectric energy converting devices. CNT shows high room temperature thermoelectric power value $SRT \approx +100\mu V/K$ with metallic conductivity and it can be doped to n- or p-type semiconductors with relatively high room temperature thermoelectric power values. Although the thermal conductivity of CNT is high, it can be reduced by mixing the CNT with appropriate polymers. Therefore, we propose the CNT-polymer composites as possible high figure of merit materials for the thermoelectric energy converting devices.

20:00


Supramolecular nanostructures of a phthalocyanine-C60 fullerene conjugate

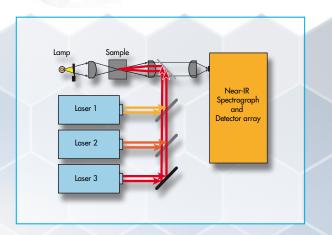

Tomas Torres¹ Giovanni Bottari¹

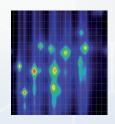
The construction of highlyâ
ordered supramolecular architectures in which organic mole- cules are organized on surfaces across multiple length scales represents
 a keyâissue within the fastâ
growing field of supramolecular electronics. One of the most promising methods for the construction of these supramolecular assemblies relies on the selfâ
organization ability of piâconjugated systems. Phthalocyanines (Pcs) are planar, two-dimensional (2-D) aromatic molecules able to self-assemble into stacks through pi-pi supramolecular interactions. These macrocycles possess outstanding electrical and optical properties. Up to date a few molecular and supramolecular architectures incorporating a Pc macrocycle and a C60 fullerene moiety (i.e. a Pc-C60 dyad) have been prepared and studied. In this communication we report on a covalently-linked Pc-C60 fullerene conjugate which is able to self-organize on graphite forming fibers and films as revealed by atomic force microscopy (AFM) studies. These nanostructures, which possess outstanding nanoscale electrical conductivity, has been also organised on SWNT.

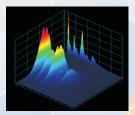

²SYNEUROPE, Stuttgart, Germany

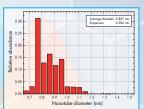
¹Organic Chemistry C-I, Autonoma University of Madrid, Madrid

Synthesis and selection of carbon nanotubes


Sunday, March 8


The NS1 Nanospectralyzer


Automatic Fluorimetric Analysis of SWNTs


- Rapid near-IR-fluorescence and absorption Spectroscopy
- Trace detection capability
- Three lasers, compact design
- Small sample volumes
- Sophisiticated versatile software
- Automatic display of (n, m) distributions in seconds
- Turn-key system operation
- Support from pioneering nanotube spectroscopists
- Generous software updates reflect new research findings

www.appliednanofluorescence.com
Applied Nanofluorescence, LLC
3701 Kirby Drive
Houston, TX 77098 USA

Applied
NanoFluorescence

www.LOT-Oriel.com/nano

LOT-Oriel GmbH & Co. KG Im Tiefen See 58 64293 Darmstadt, Germany

Graphene I and quantum dots

8:30 – 9:30	B. v. Wees, NL Spin injection, transport and manipulation in graphene field effect transistors.
9:30 – 10:00	Novoselov, UK Graphene: the magic of flat carbon
10:00 – 10:30	Coffee break
10:30 – 11:00	S. G. Louie, US Graphene and graphene superlattices: pseudospin, electron- electron and electron-phonon effects
11:00 – 11:30	C. Attaccalite, ES Electron-phonon coupling in graphene
11:30 – 12:00	F. Mauri, FR Stability, chemical structure, and Clar's aromatic sextets of hydrogen-terminated graphene ribbons
12:00 – 17:00 17:00 – 18:30	Mini Workshops Dinner
18:30 – 19:00	M. S. Fuhrer, US Probing diffusive and ballistic transport in graphene
19:00 – 19:30	C. Stampfer, CH Graphene quantum dots
19:30 – 20:00	M. Rontani, IT Molecular states of correlated electrons in quantum dots
20:00 – 21:00	Poster Session I – MON

Monday, March 9

Spin injection, transport and manipulation in graphene field effect transistors.

Bart van Wees

Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands

I will give an overview of our experiments on single graphene layer field effect devices with ferromagnetic contacts. The use of the so-called non-local geometry allowed a detailed investigation of various aspects of spin injection, spin transport and spin manipulation.

We found that: a) Spins can be injected into graphene with an injection efficiency up to 35 percent [1]. b) Spins can be transported through the graphene with a spin relaxation length of about 1.5 micrometer. By applying a perpendicular magnetic field Hanle spin precession could be studied [2]. c) By applying a large DC electric field the transport of spins between injector and detector could be facilitated using carrier drift [3]. d) The spin relaxation was found to be slightly anisotropic, with spins perpendicular to the graphene plane relaxing faster than spins in the plane [4]. The potential of graphene for future spintronics applications will be discussed. [1] C. Jozsa et al., Phys. Rev. B Rap. Com. to be published, (cond-mat 0811-2960) [2] N. Tombros et al., Nature 448, 571 (2007) [3] C. Jozsa et al., Phys. Rev. Lett. 100, 236603 (2008) [4] N. Tombros et al., Phys. Rev. Lett. 101, 046601 (2008)

9:30

Graphene: the magic of flat carbon

Kostya Novoselov

School of Physics & Astronomy, University of Manchester, Manchester, UK

When one writes by a pencil, thin flakes of graphite are left on a surface. Some of them are only one angstrom thick and can be viewed as individual atomic planes cleaved away from the bulk. This strictly two dimensional material called graphene was presumed not to exist in the free state and remained undiscovered until the last year. In fact, there exists a whole class of such two-dimensional crystals. The most amazing things about graphene probably is that its electrons move with little scattering over huge (submicron) distances as if they were completely insensitive to the environment only a couple of angstroms away. Moreover, whereas electronic properties of other materials are commonly described by quasiparticles that obey the Schrödinger equation, electron transport in graphene is different: It is governed by the Dirac equation so that charge carriers in graphene mimic relativistic particles with zero rest mass. The very unusual electronic properties of this material as well as the possibility for itâs chemical modification make graphene a promising candidate for future electronic applications.

Graphene and graphene superlattices: pseudospin, electron-electron and electron-phonon effects

Steven G. Louie

Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory

I discuss some recent theoretical results we obtained on the electronic and optical properties of graphene and graphene superlattices. The low-energy excitations in these carbon nanostructures, which are 2D massless Dirac fermions, exhibit a number of unexpected behaviors. We showed that, owing to the chiral nature (pseudospin) of the electronic states, the carrier dynamics in graphene exhibits anomalous anisotropy when subjected to an external periodic potential of nanometer dimensions (called graphene superlattices). Under appropriate conditions, these graphene superlattices are predicted to be electron supercollimators and new generation of massless Dirac fermions may be created. Our first-principles calculations revealed that electron-electron and electron-phonon interactions give rise to significant corrections to the quasiparticle band velocity of graphene and that both are central to the understanding of the electron linewidths as measured in angle-resolved photoemission experiment. We also investigated the optical properties of singleand bi-layer graphene with many-electron effects included. Although these systems are semimetals, excitonic effects are found to be quite significant in their optical absorption spectrum.

11:00

Electron-phonon coupling in graphene

Claudio Attaccalite

Unidad de Fisica de Materiales, Universidad del Pais Vasco, San Sebastian

We studied the effect of electron-electron correlation on the full three dimensional dispersion of the π -bands, Fermi velocities and effective masses of graphite/graphene. The results are then compared with recent experiments obtained by angle resolved photo-emission spectroscopy, and we found that the band structure obtained by density-functional theory (in LDA approximation) strongly underestimates the slope of the bands.Successively we investigate the effect of electronic correlation on the electron-phonon coupling (EPC) using different approximations, ranging from Hartree-Fock to GW. We found that GW renormalize the EPC at the A'1 K mode by almost 80% with respect to density functional theory in LDA approximation. The obtained phonon slope of the A'1 K is almost two time larger than the LDA one, in agreement with phonon dispersions from inelastic x-ray scattering and Raman spectroscopy experiments.

Stability, chemical structure, and Clar's aromatic sextets of hydrogen-terminated graphene ribbons

<u>Francesco Mauri</u>¹ Tobias Wassmann¹ Ari P. Seitsonen¹ A. Marco Saitta¹ M. Lazzeri¹

¹IMPMC, Universite Pierre et Marie Curie - Paris 6, Paris

We determine the stability, the geometry, the electronic, and magnetic structure of hydrogen-terminated graphene-nanoribbon edges as a function of the hydrogen content of the environment by means of density functional theory [1]. Antiferromagnetic zigzag ribbons are stable only at extremely low ultravacuum pressures. Under more standard conditions, the most stable structures are the mono- and dihydrogenated armchair edges and a zigzag edge reconstruction with one di- and two monohydrogenated sites. At high hydrogen concentration âbulkâ graphene is not stable and spontaneously breaks to form ribbons, in analogy to the spontaneous breaking of graphene into small-width nanoribbons observed experimentally in solution. The stability and the existence of exotic edge electronic states and/or magnetism is rationalized in terms of Clarâs aromatic sextets.

[1] T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. 101, 096402 (2008)

Probing diffusive and ballistic transport in graphene

Michael S. Fuhrer

Department of Physics, University of Maryland, College park

I will discuss experiments performed on atomically-clean[1] graphene on SiO_2 in ultra-high vacuum to determine the electron scattering rates from charged impurities[2], point defects[3], and phonons (graphene acoustic phonons and substrate polar optical phonons)[4]. The experiments point out both the promise of graphene as well as the technological challenges that lie ahead in realizing better samples. I will also discuss briefly experiments in the ballistic transport limit in few-100 nm single-layer (bi-layer) graphene samples, in which charge transport is dominated by resonant transmission of massless (massive) particle-in-a-box like states confined between the source and drain electrodes[5].

- [1] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Letters 7, 1643 (2007).
- [2] J. H. Chen, C. Jang, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nature Physics, 4, 377 (2008).
- [3] C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, M. S. Fuhrer, Physical Review Letters 101, 146805 (2008).
- [4] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nature Nanotechnology 3, 206 (2008).
- [5] S. Cho and M. S. Fuhrer, submitted.

Graphene quantum dots

Christoph Stampfer¹ Johannes Güttinger¹ Tobias Frey¹ Stephan Schnez¹ Françoise Molitor¹ Sarah Hellmüller¹ Thomas Ihn¹ Klaus Ensslin¹
¹Nanophysics Group, ETH Zurich, Zurich

Graphene, the first real two-dimensional solid consisting of a hexagonal lattice of carbon atoms reveals a number of unique electronic properties making this material interesting for high mobility electronics, spintronics and nanoelectronics in general. Here we report on measurements showing that excited single-particle states can be detected in graphene quantum dots via co-tunneling in the Coulomb blockade as well as via related conductance resonances at high voltage bias outside the blockaded regions. The devices, consisting of graphene islands with diameters of around 50 to 140 nanometers are connected via two narrow graphene constrictions to source and drain contacts. These devices are tunable by lateral graphene gates. From transport measurements we extract charging energies around 10 meV and single-level spacings of a few meV. We demonstrate the functionality of a charge-read-out using a nearby graphene constriction. Both steps, the detection of excited states and the charge-read-out, are crucial for the investigation of graphene quantum devices in general as well as for future implementations of spin qubits in graphene.

Molecular states of correlated electrons in quantum dots

Massimo Rontani


CNR-INFM Research Center S3, Modena, Italy

The electron-electron interaction is predicted to fundamentally affect electron states in quantum dots (QDs), giving rise -in certain regimes- to a molecule made of electrons, whose mutual distances are rigidly fixed like those of nuclei in conventional molecules.

We first report evidence of molecular behavior based on inelastic light scattering measurements of the excitations of low-density GaAs quantum dots containing exactly four electrons. Theoretical predictions obtained via the configuration interaction (CI) method are in quantitative agreement with the observed excitations and highlight that roto-vibrational modes develop at the onset of short-range correlation.

We then investigate QDs in carbon nanotubes, which provide dramatic evidence of correlation. Our CI calculations take into account the role of two-valley degeneracies as well as the spin-orbit interaction. Without spin-orbit, the two-electron ground state is a triplet, due to the occurrence of a pseudospin degree of freedom linked to the orbital degeneracy. By including spin-orbit, we demonstrate that Coulomb correlation is an essential feature for explaining recent single-electron tunnelling spectra.

Graphene I and quantum dots

New NMR strategies to study carbon nanotubes

 $\rm \frac{Edy\ Abou-Hamad^1\ Y.\ Kim^2\ T.\ Wågberg^3\ A.\ Rubio^4\ D.\ E.\ Luzzi^2\ C.\ Goze-Bac^1}{^1Laboratoire\ Colloïdes,\ Verres\ et\ Nanomatériaux,\ CNRS\ Universit\'e\ Montpellier\ 2,\ France$

²Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA

³Department of Physics, Umeå University, S-901 87 Umeå, Sweden

⁴European Theoretical Spectroscopy Facility (ETSF), Dpto. Física de Materiales and Centro Mixto CSIC-UPV/EHU, Universidad del País Vasco UPV/EHU, Edificio Korta, Avd. Tolosa 72, 20018 San Sebastián, Spain

The local magnetic properties of the one dimensional inner space of the nanotubes are investigated using $^{13}\mathrm{C}$ nuclear magnetic resonance spectroscopy of encapsulated fullerene molecules inside single walled carbon nanotubes. Isotope engineering and magnetically purified nanotubes have been advantageously used on our study to discriminate between the different diamagnetic and paramagnetic shifts of the resonances. Ring currents originating from the π electrons circulating in the nanotube, are found to actively screen the applied magnetic field by -36.9 ppm. Defects and holes in the nanotube walls cancel this screening locally. At high magnetic fields, the modifications of the NMR resonances of the molecules from free to encapsulated can be exploited to determine some structural characteristics of the surrounding nanotubes.

2

Helicities sorting of single-walled carbon nanotubes by amphiphiles molecules adsorption studied by resonant Raman excitation profiles

 $\underline{L.~Alvarez}^1$ A. Righi 2 I. O. Maciel 2 M. A. Pimenta 2 T. Michel 1 J. L. Sauvajol 1 R. Marquis 3 S. Meunier 3

¹LCVN, University Montpellier II, UMR 5587 France

²Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30123-970, Brazil

 $^3 \rm Laboratoire$ de Synthése Bioorganique UMR 7175 - LC1 Faculte de Pharmacie BP 24 67 401 ILLKIRCH- France

Adsorption of specifically designed polyaromatic amphiphiles were used to sort single-walled carbon nanotubes (SWNTs) with different helicities. The sorting is investigated by resonant Raman excitation profiles. Chiral indexes (n and m) of SWNTs present in our samples are determined by fitting the Raman peaks observed in the radial breathing modes region (RBM). Scanning over an excitation energy range between 2 and 2.2 eV with a 0.01 eV step allows to investigate mainly two families of metallic nanotubes (2n+m=24 and 2n+m=27). The results display significant differences between the sorted and the reference samples, meaning that

discrimination between SWNTs of different helicities is possible.

3

Improving Quality of Single Walled Carbon Nanotube Networks

<u>Alberto Ansaldo</u>¹ Sandesh Jaybhaye^{1,2} Marco Chiarolini³ Ermanno Di Zitti³ Davide Ricci¹

¹Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova â Italy

²Nanotechnology Research Center, Birla College, Kalyan, 421304, Maharashtra â India

³Dipartimento di Ingengeri Biofisica ed Elettronica, Universitá di Genova, Via Opera Pia 11a, I-16145 Genova â Italy

Single walled carbon nanotubes (SWCNTs) are one of the most interesting materials for transparent conductive films. SWCNT percolating networks have been produced by a variety of different methods mainly by spraying and filtration. Unfortunately, suspending CNTs in liquid requires the use of ultrasound and surfactants. Sonication reduces bundling but increases the number of defects and shortens CNT length. Moreover, after deposition, surfactants are difficult to be removed and tend to create an insulating layer between CNTs and between CNTs and contacts. The overall effect is to considerably reduce the global conductivity of CNT films. It is our opinion that a considerable improvement in film quality could come from a direct synthesis of the network by chemical vapour deposition (CVD) and combining this with direct transfer techniques that avoid suspension of the CNTs in a liquid. In this work we show our latest results in enhancing the quality of SWCNT percolating network synthesis by alcohol CVD on silicon oxide substrates using cobalt and nickel acetates as precursors, varying catalyst composition, substrate preparation and catalyst pre-treatment.

4

Engineering the spin transport in graphene with vacancies

Vasilii I. Artyukhov¹ Leonid A. Chernozatonskii¹

¹Institute of Biochemical Physics RAS, Moscow

We use densiy functional theory to study in detail the magnetic structure of monovacancies in graphene. Breaking of sublattice symmetry leads to spin polarization, coming from both localized and delocalized states. We propose arranging the vacancies in one-dimensional 'tracks' as a pathway to create novel spintronic circuit elements with highly tunable properties, based entirely on graphene. We also study the effects of chemical modification of vacancies with different species (H, F, B, N) to saturate the reactive dangling bonds; controlled cemical modification is proposed as an additional tool to alter the magnetic structure of graphene.

5

Continuum Elastic Modeling of Graphene Resonators

Juan Atalaya¹ Andreas Isacsson¹ Jari M. Kinaret¹

Starting from an atomistic approach, we have derived a hierarchy of successively more simplified continuum elasticity descriptions for modeling the mechanical properties of suspended graphene sheets. We find that already for deflections of the order of 0.5 Å a theory that correctly accounts for nonlinearities is necessary and that for many purposes a set of coupled Duffing-type equations may be used to accurately describe the dynamics of graphene membranes. The descriptions are validated by applying them to square graphene-based resonators with clamped edges and studying numerically their mechanical responses. Both static and dynamic responses are treated, and we find good agreement with recent experimental findings.

¹Department of Applied Physics, Chalmers University of Technology, Sweden.

Photoemission and x-ray absorption studies on magnetic rare earth metallofullerenes and ErCl3 nanowires inside carbon nanotube templates

<u>Paola Ayala</u>¹ Ryo Kitaura² Hidetsugu Shiozawa³ Hisanori Shinohara² David Batchelor⁴ Esko Kauppinen¹ Christian Kramberger⁵ Thomas Pichler⁵

¹Department of Applied Physics, Helsinki University of Technology, Finland

Magnetic rare earth metallofullerenes and crystalline ErCl3 nanowires templated inside carbon nanotubes can be tailored under high temperature and vacuum with a high filling-ratio yielding novel magnetic chains and quantum wires [1,2]. A combination of resonant photoemission and XAS has been utilized to assess the charge transfer and bonding environment in the pristine nanotube templates and the filled functionalized separated samples [3]. Core level information of the filler is investigated to reveal hybridization state and bonding environment of the elements in these structures. Resonant PES is also studied in order to discern the metallicity of the filler. This allows us to evaluate the changes in the electronic structure of the valence and conduction band of the CNT. For the latter additionally, XPS line shape analysis will also be discussed for a detailed analysis of the chemical state and bonding environment.

Work supported by the DFG PI $440 \ 3/4/5$.

- [1] R.Kitaura and H.Shinohara, Jap.J.Appl.Phys.46 (2007) 881
- [2] R.Kitaura et al. NanoRes 1(2008)152
- [3]T.Pichler et al. Phys.Stat.Sol.b $245(2008)\ 2038$

7

Carbon Nanotube Synthesis via Ceramics

<u>A. Bachmatiuk</u>¹ M. Bystrzejewski² P. Ayala³ F. Schaeffel¹ E. Borowiak-Palen⁴ A. Huczko² H. Lange² T. Gemming¹ T. Pichler⁵ C. Mickel¹ R. Klingeler¹ H-W. Hübers⁶ M. H. Rümmeli¹

¹Leibniz Institute for Solid State and Materials Research Dresden, Germany

²Department of Chemistry and Institute for Advanced Research, Nagoya University, Japan

³Department of Electronic Engineering, University of Surrey, UK

⁴BESSY II,Berlin, Germany

⁵Faculty of Physics, University of Vienna, Austria

²Warsaw University, Dept of Chemistry, 02-093 Warsaw, Poland

 $^{^3{\}rm Laboratory}$ of Physics and Center for New Materials, Helsinki University of Technology, Finland

⁴Szczecin University of Technology, KnowMatTech, Szczecin, Poland

⁵Department of Physics, Vienna University, Strudlhofgasse 4, A-1090 Wien, Austria

⁶German Aerospace Agency (DLR), Adlershof, Berlin, Germany

The potential for ceramics as catalysts for CNT formation exceeds that from metal catalysts in that ceramics can serve as a catalyst particle for CNT nucleation/growth as found with metal catalysts. In addition, they can also serve as a template for the synthesis of carbon nanostructures. This latter point (template route) provides a more versatile means to engineer different types of nanotubes structures (e.g. Y junctions), as compared to metals catalysts. Furthermore, ceramics are often removed (purification) from as produced samples far more easily than metal catalysts. Here we present studies on the growth of carbon nanotubes (CNT) from ceramics in chemical vapour deposition (CVD) and laser pyrolysis routes. We show CNT growth from both ceramic particles and nanowires. The nanowires serve as templates. Further, we demonstrate the templating route can also be used for doping (B) the CNT.

Solubilization and Density Gradient Fractioning of SWCNTs by a Novel three Component Surfactant Class Based on Perylene Dyes

<u>Claudia Backes</u>¹ Cordula D. Schmidt² Frank Hauke¹ Andreas Hirsch²

¹Institute of Advanced Materials and Processes, University Erlangen Nurenberg

²Department of Chemistry and Pharmacy, University Erlangen Nurenberg

For exfoliating SWNTs, we have developed a three component surfactant with solvophylic moiety, polycyclic aromatic perylene bisimide unit for interaction with the SWNT backbone and hydrophobic aliphatic tail. The degree of individualization of the SWNTs is higher than for dispersions in the commonly used surfactant SDBS as shown by statistical AFM analysis. Furthermore, optical spectroscopy revealed dispersion and individualization at a SWNT to perylene (Per) weight ratio of 2:1. The SWNT-Per dispersions were characterized by various spectroscopic and microscopic techniques. A π -stacking interaction is reflected by a redshift of the optical perylene transitions, a strong alteration of the SWNT emission pattern and a significant quenching of the SWNT and perylene fluorescence intensity (C. Backes, et. al., J. Am. Chem. Soc., accepted).

We have applied this surfactant in density gradient ultracentrifugation (DGU) separation experiments where a high degree of SWNT individualization is a key to success. SWNTs were fractioned in a combined co-surfactant and replacement DGU approach underlining the versatility of our dispersion concept (C. Backes, et. al., Chem. Commun., accepted).

Carbon Nanotube CVD on a Tantalum support for Interconnect Fabrication â materials interactions

 $\underline{{\rm B.~C.~Bayer^1}}$ C. Castellarin-Cudia² A. Goldoni² C. Cepek³ S. Hofmann¹ J. Robertson¹

A possible application for carbon nanotubes (CNTs) is the use as interconnects in large scale integrated (LSI) circuits [1]. However, the deposition process must yield vertically aligned, high density CNTs on conductive materials and must be compatible with commonly used LSI materials.

In this study we examine the growth of CNTs by thermal chemical vapour deposition (CVD) on LSI-compatible Ta support layers with an iron catalyst. Structural and morphological characterisation of the obtained CNT forests and the support/catalyst system is undertaken to gain insight into possibly growth-inhibiting reactions of the Ta support layer, the metal catalyst layer, the process gases and residual gases in the CVD system and their temperature dependence. In addition, X-ray photoelectron spectroscopy (XPS) is used to resolve chemical interactions directly at the interface of the buffer layer, the catalyst and the growing CNTs. This is compared to CNT growth on commonly used oxide supports [2].

- [1] Robertson J. et al., Appl Phys Lett, 93, 163111-1, 2008
- [2] Mattevi C. et al., J Phys Chem C, 112, 32, 12207, 2008

10

Multi Walled Carbon Nanotubes Plastic Actuator

<u>Maurizio Biso</u>¹ Davide Ricci²

¹Dipartimento di Informatica Sistemistica e Telematica, Università di Genova, Via all'Opera Pia 13, I-16145 Genova â Italy

²Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova â Italy

Carbon nanotubes have electrical and mechanical properties that make them highly attractive for actuators. They have the ability to deform elastically by several percent, thus storing very large amounts of energy, thanks to their crystalline nature and to their morphology. A bimorph actuator composed of single walled carbon nanotubes (SWCNTs), polyvinylidene difluoride (PVDF) and the ionic liquid (IL) 1-butyl 3-methylimidazolium tetrafluoroborate [BMIM][BF₄] with a polymer-supported internal ionic liquid electrolyte was previously demonstrated by Aida et al.^[1]. While several experiments were carried on using SWCNTs, PVDF and a number of ILs, the use of multi walled carbon nanotubes instead of SWCNTs is, to our knowledge, a new result that will be presented here. Electrochemical cha-

¹Engineering Department, University of Cambridge, Cambridge, UK

²Sincrotrone Trieste S.c.p.A., Area Science Park, Trieste, Italy

³Laboratorio Nazionale TASC-CNR-INFM, Trieste, Italy

racterizations by cyclic voltammetry, impedance spectroscopy and actuation tests performed applying a square wave of 4 Volt peak-to-peak at frequencies between 0.3 Hz and 2 Hz will be reported and discussed.

[1] T.Fukushima, T.Aida, âIonic Liquids for Soft Functional Materials with Carbon Nanotubes,â Chem.Eur.J., vol. 13, no.18, pp. 5048-5058, Jun. 2007

11

Strongly Correlated Electron Phenomena in Carbon Nanotubes

<u>Marc Bockrath</u>¹ Vikram V. Deshpande¹ Bhupesh Chandra² Robert Caldwell² Dmitry Novikov³ James Hone²

¹California Institute of Technology, Pasadena

In this talk I will discuss our recent results demonstrating strongly correlated electron behavior in ultra-clean carbon nanotube quantum dots. Specifically, we have observed one-dimensional (1D) Wigner crystal behavior of dilute holes in semiconducting nanotubes, finding three distinct regimes of spin and valley quantum number ordering as the charge density and axial magnetic field are varied. The boundaries between the regimes in density and magnetic field are well-described by the theory of Levitov and Tsvelik for a narrow-gap Luttinger liquid. In the second part of the talk I will present results showing that the electrons in nominally metallic nanotubes comprise a 1D Mott insulator. This indicates that carbon nanotubes are never truly metallic, in agreement with theoretical predictions that account for umklapp scattering at half-filling due to electron-electron interactions. Using inelastic cotunneling spectroscopy, we also observe neutral electronic excitations within the gap, yielding an additional signature of strong electron-electron interactions. Our results demonstrate nanotubes' promise for studying a variety of tunable correlated electron phenomena in 1D.

12

Tailoring carbon nanotubes grown from non-ferromagnetic catalysts via CVD.

 $\underline{\text{Ewa Borowiak-Palen}}^1$ A. Steplewska 1 A. Bachmatiuk 1 M. H. Rümmeli 2 R. J. Kalenczuk 1

The catalytic growth of different carbon nanotubes by chemical vapor deposition (CVD) using non-ferromagnetic catalyst particles (such as copper) will be presented. In this work detailed studies that catalysts with fully filled d orbital (e.g. Cu) can be a source of bulk scale synthesis of singlewalled or multiwalled carbon nano-

²Columbia University, New York

³Yale University, New Haven

¹Institute of Chemical and Environment Engineering, Szczecin University of Technology, Szczecin

²2. Leibniz Institute of Solid State and Materials Research Dresden, Germany

tubes using the same catalyst mix (viz. equal molar ratio of metal to magnesia) but with different experimental setups and conditions. The detailed analysis of the samples is supported by electron transmission microscopy observations, energy dispersive X-Ray spectroscopy mode, X-Ray Diffraction and Raman spectroscopy.

13

Various methods of surface-enhanced Raman spectroscopy applied to single and double walled carbon nanotubes

Bea Botka¹ Katalin Kamaras¹

We investigated several SERS (surface-enhanced Raman spectroscopy) methods reported in the literature regarding their application to carbon nanotubes. Silver and gold were used to prepare different types of surfaces. We achieved surface enhancement factors up to 200 by a modification of the method by Ouyang and Fang [1] on silver. In particular, we were able to detect with enhanced sensitivity the intermediate frequency modes (Z-breathing phonons), which correspond to vibrations along the nanotube axis, and which, according to theoretical predictions [2], are sensitive to the nanotube length. These modes are usually weak or non-existent in the normal Raman spectra. We will compare these modes in several types of nanotube samples, and demonstrate the effect of physical and chemical treatment.

Supported by the European Commission FP7 through the Initial Training Network FINELUMEN, contract PITN-GA-2008-215399.

- [1] Y. Ouyang, Y. Fang: Spectrochimica Acta Part A 61 (2005) 2211â2213
- [2] R. Saito et al.: Phys. Rev. B 59 (1999) 2388-2392

14

Polarized Raman measurements on the reaction center of crystallized photosystem II

Katharina Brose¹ Athina Zouni² Matthias Broser² Janina Maultzsch¹

In photosynthesis the sunlight is collected by antenna pigments and transmitted to special molecule structures called photosystem I and photosystem II, where the energy of light is transformed into a separation of charge. In the photosystem II reaction center, two β -carotene molecules Car_{D1} and Car_{D2} were identified, which are oriented perpendicular to each other¹. The role of these carotenes in the pho-

¹Research Intitute for Solid State Physics and Optics, Budapest

¹Festkörperphysik, Technische Universität Berlin, Berlin

²Institut für Chemie, Technische Universität Berlin, Berlin

to synthesis process is still unknown. We use Raman spectroscopy, which is one of the most important methods to analyse the structure of solids and molecules, to study the two β -carotenes. We present polarized Raman measurements of the beta-carotene vibrational modes in single crystals of photosystem II and discuss the possible origin of the observed polarization dependence.

15

A Molecular 15 N Quantum Nuclear Memory using 15 N@C $_{60}$

<u>Richard M. Brown</u>¹ John J. L. Morton¹ Alexei M. Tyryshkin² Kyriakos Porfyrakis¹ Arzhang Ardavan³ G. Andrew D. Briggs¹ S. A. Lyon²

¹University of Oxford, Oxford

²Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.

 $^3{\rm Clarendon}$ Laboratory, Department of Physics, Oxford University, Oxford, OX1 3PJ, UK

 $N@C_{60}$ is of significant interest in the quantum information processing (QIP) community due to its long electron decoherence times and ability to be incorporated into larger computing architectures. In QIP the loss of information through the process of decoherence is a fundamental problem, but it can be combated through the transfer of qubit (quantum bit) states. Electron spins allow fast manipulation and are easily initialised compared to nuclear spins, but suffer from short decoherence times. Nuclear spins have significantly larger decoherence times than electron spins and hence propagation of states can provide a route to information storage. Thus, a powerful model would use the electron qubit for initialisation, processing and readout, with transfer to a nuclear 'memory' qubit. We have implemented such a scheme using a series of tuned microwave and radiofrequency pulses to produce a ^{15}N nuclear memory within a dilute $^{15}N@C_{60}$ in C_{60} matrix. The work reports a significant improvement in decoherence time of over two orders of magnitude through information transfer from the electron to the nuclear spin state, with a two-way fidelity of 70%.

16

COMPARATIVE STUDY OF THE ELECTRONIC STRUCTURE OF DIFFERENT TYPES OF SINGLE-WALL CARBON NANOTUBES

<u>Lyubov G. Bulusheva</u>¹ Alexander A. Okotrub¹ Yuliya V. Lavskaya¹ Mikhail A. Kanygin¹ Kenji Hata² Urszula Dettlaff-Weglikowska³ Antonio Fonseca⁴

Electronic structure of single-wall carbon nanotubes (SWNTs) has been probed

¹Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

²AIST, Tsukuba, Japan

³Max-Planck-Institute for Solid State Research, Stuttgart, Germany

⁴Laboratoire de Chimie et dâElectrochimie des Surfaces, FUNDP, Namur, Belgium

by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Three types of SWNT samples were examined: SWNTs produced by laser vaporization method, SWNTs synthesized by methane decomposition over Co catalyst supported on MgO, and aligned SWNTs produced on silicon support using a super-growth method. Alignment of the third type of SWNTs was determined from an angular dependence of a ratio of π^* and σ^* resonances. The width of angular distribution of SWNTs in a film exceeds the value found from SEM image analysis that could be due to defects in SWNTs. Defects should contribute to the NEXAFS spectrum and we found that π^* resonance width has the smaller value for laser-produced SWNTs and the larger value for aligned SWNTs. X-ray absorption spectra of armchair, zigzag and semiconducting chiral carbon nanotubes were modeled based on the results of B3LYP calculations. It was shown that the geometry of carbon nanotubes has effect on the width of the π^* resonance. Thus, NEXAFS spectroscopy could be used for checking of a presence of metallic SWNTs in a sample.

17

Characterisation of cobalt(II)porphyrin/carbon nanotube nanohybrids by electron paramagnetic resonance and optical spectroscopy

 $\underline{{\rm Sofie}~{\rm Cambr\acute{e}}^1}$ Wim Wenseleers 1 Jelena Čulin 2 Sabine Van Doorslaer 3 Etienne Goovaerts 1

¹Experimental Condensed Matter Physics Laboratory, University of Antwerp (Belgium), Antwerp

²Rudjer Boskovic Institute (Croatia), 1000 Zagreb

³Spectroscopy in Biophysics and Catalysis Laboratory, University of Antwerp (Belgium), Antwerp

In this study, we use electron paramagnetic resonance (EPR) spectroscopy in combination with absorption, steady state and time resolved fluorescence spectroscopy to characterize paramagnetic cobalt(II)octaethylporphyrin (CoOEP)/single-wall carbon nanotube (SWNT) nanohybrids.[1] While measuring on a bulk sample, two different components can be distinguished in the EPR spectrum, arising from porphyrins interacting with metallic and semiconducting NTs. From analysing these two EPR contributions, we conclude that the metallic NTs are stronger π -acceptors for the porphyrins than the semiconducting NTs. Solubilising the nanohybrids in water using bile salt surfactants[2], after applying a thorough washing procedure, yields stable solutions in which at least 99% of the porphyrins are adsorbed on the NTs. Thanks to this purification, we observe the isolated absorption spectrum of the interacting porphyrins, which is strongly red-shifted compared to the free porphyrin absorption, and a quasi-complete quenching of the porphyrin fluorescence. [1] S. Cambré et al., ChemPhysChem 2008, 9, 1930 [2] W. Wenseleers et al., Adv. Funct. Mater. 2004, 14, 1107

Manipulation of spin-active peapods for magnetic resonance studies

S. Casimirius¹ L. Ciric¹ M. Duchamp¹ A. Magrez¹ J. H. Warner² H. Shinohara² M. H. Rümmeli³ G. A. D. Briggs² L. Forro¹

¹Institute of Physics of Complex Matter, EPFL, Lausanne, Switzerland

Fullerene-like materials open up new fields in spin electronics because of their intrinsic characteristics as well as their ability to host species. Peapods, produced from spin-bearing endohedral fullerenes, enable to study spin-spin interactions, and spin transfer along spin chain. Herein, we will report on the fabrication of peapod-based devices for spin-chain analysis by Electron Spin Resonance (ESR) and electrically detected magnetic resonance (EDMR) for investigation of spin-dependent transport properties. Peapods are synthesized by sublimation of metallofullerenes in presence of single-walled carbon nanotubes which are produced by laser-evaporation process with non-magnetic catalyst, and sorted by electronic structure. Then, peapods are deposited onto substrates from organic solvent based-suspensions of debundled materials. Individual species as well as thin films with controlled orientation of the peapods can be obtained by means of dielectrophoresis. Finally, the integration of La@C82 peapods by use of electron-beam lithography into probe devices designed for magnetic studies will be presented.

19

Improvement of Polypyrrole and Carbon Nanotube Co-deposition Techniques for High Charge-transfer Electrodes

Elisa Castagnola¹ Maurizio Biso¹ Davide Ricci²

Both carbon nanotubes (CNTs) and polypyrrole (PPy) have been investigated as materials for manufacturing high charge-transfer electrodes due to their outstanding performances. The combination of the complementary properties of CNTs and PPy via an electrochemical co-deposition route has been already shown to achieve interesting results. In this work, PPy and chemically-functionalized multi walled CNTs (COOH-MWCNT) were potentiostatically, galvanostatically and potentio-dynamically electrodeposited from an aqueous solution at different temperatures to form a nanocomposite on the surface of a variety of metal electrodes. A study of the influence of experimental parameters such as temperature, current, and growth rate in the different electrodeposition methods was performed. The electronic and electrochemical properties of the nanocomposite films have been studied by cyclic voltammetry and electrochemical impedance spectroscopy, while a morphological study has been performed via scanning electron microscopy. A comparison between

²Department of Materials, Oxford University, Oxford, UK

³IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany

¹Dipartimento di Informatica Sistemistica e Telematica, Università di Genova, all ²Istituto Italiano di Tecnologia. Via Morego 30, L-16163 Genova à Italy.

 $^{^2}$ Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova â Italy

the different techniques will be reported and guidelines for best results depending on the application will be discussed.

20

Atomic Diffusion and Reshaping of Solid Catalytic Particles During Nanotube Growth

 $\frac{\text{Felipe Cervantes-Sodi}^1}{^1\text{Engineering Department, University of Cambridge, Cambridge}}$

The catalytic particle dynamics during catalytic chemical vapor deposition of nanotubes (CNTs) plays a fundamental role in the nucleation and growth process and in the final CNT morphology. In-situ transmission electron microscopy videos at low temperatures show constantly reshaping solid catalytic particles [1,2]. Here, we explain the physics of this process and link it to the final CNT morphology. Using a combination of multiscale atomistic modeling and analytic continuum calculations we show that the reshaping can be either via surface diffusion or via bulk drift of the Ni atoms [3]. The temperature and the activity of the growing CNT edge determine the degree of surface diffusion or bulk drift. The nanoparticle reshaping is driven by capillary forces. The interplay between the capillary and anchoring forces can lead to either: 1)steady CNT growth, 2)encapsulation of the nanoparticle, 3)splitting of the nanoparticle, or 4)formation of bamboo-like CNTs. The physics in our study is elemental and general, and can be extrapolated to other nanosystems.

- 1 S. Hofmann, et al. Nano Lett, 7 602 (2007)
- 2 S. Helveg, et al. Nature, 427 426 (2004)
- 3 F. Cervantes-Sodi et al submitted (2009)

21

METALLIC SINGLE-WALL CARBON NANOTUBES SEPARATED BY DENSITY GRADIENT ULTRACENTRIFUGATION

<u>Alexander Chernov</u>¹ Elena Obraztsova¹ Anatolii Lobach²

¹A.M. Prokhorov General Physics Institute, RAS, 38 Vavilov str., 119991, Moscow, Russia

²Institute of Problems of Chemical Physics, RAS, 142432, Chernogolovka, Russia

Unique properties of single wall carbon nanotubes (SWNTs) are already successfully used in technologies. Depending on geometry SWNTs may be either metallic or semiconducting. Up to now synthesis is not able to provide a purely metallic nanotube fraction. A recent method of a density gradient ultracentrifugation (DGU) is efficient in separation of SWNTs. In this work we used DGU to extract a metallic fraction from as-grown arc-discharge SWNTs. The process parameters (the surfactant type and concentration, the treatment time, the approach to the gradient formation) have been optimized. The metallic fraction has appeared as an upper one, colored in blue. The fraction has been studied with the UV-VIS-NIR

absorption and Raman techniques. The only one absorption band (with maximum at 680 nm) corresponding to metallic nanotubes has been observed. The results obtained are important for formation of the optical media with desired properties [1], especially for nanoelectronics and laser physics [2].

Thanks for support with RFBR-07-02-91033 and RAS programs.

- 1.A.I. Chernov et al., Phys. Stat. Sol. (b), 244 (2007) 4231.
- 2.A.V. Tausenev et al., Appl. Phys. Lett. 92 (2008) 171113.

22

Electron spin resonance study of graphene flakes

<u>Luka Ciric</u>¹ Balint Nafradi¹ Areta Olariu¹ Andrzej Sienkiewicz¹ Arnaud Magrez¹ Laszlo Forro¹

¹Institute of Complex Matter - Labaratory for novel electronic materials, EPFL Ecole Polytechnique Federal de Lausanne, Lausanne

Electron spin resonance (ESR) is an efficient technique to study the density of states (as a function of temperature and doping) of graphene, and to detect magnetic interaction of localized spins at the edges of graphene flakes and ribbons. We have performed ESR measurements in the 4-300 K temperature range on graphene samples derived from: 1) chemical reduction of graphene oxide sheets, 2) liquid phase exfoliation of graphite (LPEG), 3) and mechanical exfoliation. The ESR signal depends very much on the method of preparation of graphene. The amount of localized spins and the Pauli component of the spin susceptibility vary from sample to sample. In some cases stronger-than-Curie temperature dependence is observed below 20 K. We will report preliminary ESR experiments on K- and N-doped graphene samples, as well.

Acknowledgment: The work is performed in collaboration with R. Nesper, J. Coleman and K. Kern. The project is partially supported with the European Network IMPRESS.

23

Single Molecule Circuits with Carbon Nanotube Wiring

Philip G. Collins

Dept. of Physics and Astronomy, University of California, Irvine, Irvine

The vision for molecular electronics extends well beyond miniaturation and scaling to include new techniques for studying chemical bonding, biocatalysis, and molecular recognition. However, operational single molecule devices remain exceedingly fragile and difficult to fabricate. We have demonstrated a promising new architecture for studying single molecule behavior based on point functionalizationöf single-walled carbon nanotube circuits. In this technique, single defects are created in the sidewall of an electrically connected nanotube. The technique, free of precision lithography or mechanical manipulation, produces single attachment

sites in operational circuits, and enables the electrical monitoring of single molecule dynamics. This presentation will describe these techniques and demonstrate real-time, single molecule monitoring of various chemical processes including oxidation, conjugation, recognition and binding. Advantageous properties of the nanotube architecture include excellent electrical, mechanical, and chemical stabilities and well-defined bonding to the molecules of interest.

24

Raman spectroscopy study on concentrated acid treated carbon nanotubes

S. Costa¹ B. Scheibe¹ M. H. Rümmeli² E. Borowiak-Palen¹ R. J. Kalenczuk¹ Szczecin University of Technology, Szczecin

Aggressive purification treatments may modify the carbon nanotubes (CNTâs) electronic and vibrational properties. The most common procedures to remove catalyst particles in the raw carbon materials involve the use of acids, either individually or in different combinations, through long periods of refluxing and/or sonication processes. A comparative study will be presented on the effect of strong acid treatments either in single walled (SWCNT's) and multi walled carbon nanotubes (MWCNT's). The effects were studied by Raman spectroscopy, well known as a powerful tool in the characterization of the electronic and vibrational modes of CNTâs. The results show that in SWCNTâs the raw sample shows a broader G band, well fitted using a Breit-Wigner-Fano (BWF) line in comparison with the acid treated sample, which can be fitted using a Lorentzian lineshape. The original shape of this feature is recovered after the annealing step. With respect to the MWCNTâs samples, an increase in the intensity of a second peak in the Gâ band region was observed after the acid treatment. The origin of this double peak is not yet clarified.

25

Gate-tunable ferromagnetic proximity effect and giant g-factor fluctuation in InAs Nanowire Quantum Dots

<u>Szabolcs Csonka</u>¹ Lukas Hofstetter¹ Frank Freitag¹ Thomas S. Jespersen² Martin Aagesen² Jesper Nygard² Christian Schoenenberger¹

Semiconductor nanowires (NW) provide new alternatives to fabricate quantum electronic devices. The possibility to contact InAs NWs with ferromagnetic (F), superconducting (S) and normal (N) electrodes, to implement local gates, and the strong internal spin-orbit interaction allow exploring novel transport effects of hybrid nanostructures. We study InAs NW quantum dots using both N, F, S contacts, and explore the spin physics by measuring the B field-induced splitting of the spin 1/2 Kondo effect. Unlike to previous studies, the g-factors of neighboring states

²Leibniz Institute for Solid State and Materials Research Dresden, Germany

¹Institute of Physics, University of Basel, Basel

²Nano-science Center, University of Copenhagen

can scatter between 2 and 18 and can therefore be even larger than in the bulk (g=15). We demonstrate further the electric gate tunability of the g-factor in a single charge state. When using F contacts a zero-field splitting is induced. This proximity induced exchange field has recently been measured for the first time by Hauptmann et al. (Nature Physics Vol 4, (2008)) in carbon nanotubes. Here, we show the same effect in a semiconducting NW, demonstrating that this effect is universal. Employing a pair of S and F contacts, the proximity-induced exchange shows up as a âkleineâ-gap in superconducting spectroscopy.

26

Study of the role of Fe based catalysts on the growth of B-doped SWCNTs synthesized by CVD

S. Daothong¹ P. Singjai² J. Parjanne³ M. Valkeapaa⁴ C. Kramberger⁵ K. De-Blauwe⁵ T. Pichler⁵ P. Ayala³ E. Kauppinen³

¹Department of Applied Physics, Helsinki University of Technology and Nanomaterials Research Unit, Department of Physics, Faculty of Science, Chiang Mai University

²Nanomaterials Research Unit, Department of Physics, Faculty of Science, Chiang Mai University

³Department of Applied Physics, Helsinki University of Technology

⁴Department of Chemistry, Helsinki University of Technology

The production of B-doped single-walled carbon nanotubes by chemical deposition methods has only recently been successful. The complex interplay within the thermodynamic parameters added to the favorable formation of solid compounds containing Boron, have generally made of this synthesis a difficult task to achieve. This contribution will mainly focus on the role of the catalyst composition as one of the crucial parameters to produce the B-doped single wall carbon nanotubes by chemical vapor deposition. In this study, we point out the effect of Fe based catalysts, which were prepared from different kinds of Fe compounds supported in different porous magnesium oxide powders comparable to the traditional synthesis of pristine carbon nanotubes. Not only the quality and the yield of nanotubes produced with each catalyst were studied, but also the formation of by products was carefully monitored. Transmission electron microscopy and Raman spectroscopy have been used to analyze the overall nanotube quality, whereas XRD and analytical electron microscopy have been used in order to determine the catalysts composition before synthesis and the formation of byproducts after the reactions occur.

⁵Faculty of Physics, University of Vienna

Photoselective resonant Raman response of n- and p- type intercalated graphite and SWCNT revisited

K. De-Blauwe¹ C. Kramberger¹ W. Plank¹ A. Grüneis¹ H. Kataura² T. Pichler¹ Dept. of Physics, University of Vienna, Wien ²AIST, Tsukuba, Ibaraki 3058562 Japan

We present new studies on the detailed photoselective Raman response of n- and p-type intercalated graphite and SWCNT. Here we focus on the high doping region. The shift of the G line is used to monitor the doping level of the potassium doped graphite intercalated compounds (GIC) and the p- type intercalated SWCNT using irontrichloride. Special emphasis is given on the charges in the dispersion of the D and D* lines as a function of doping. We also discuss the implications of our results on the doping induced modifications in the Kohn anomaly in the phonon dispersion at the K point. Acknowledgements: DFG PI 440-5.

28

Preparation and characterization of LiMnPO4/SWNT composites as cathode material for Li-ion battery.

Urszula Dettlaff-Weglikowska¹ Siegmar Roth² Norio Sato³ Jun Yoshida⁴

The olivine type materials, like LiMnPO 4 , are considered as cathode materials for the lithium ion batteries. Due to their low electrical conductivity usually up to 40 wt % of conductive additive in form of carbon black is required. The additive does not participate in the electrode reactions and therefore represent a dead weight reducing the storage capacity. We replaced the state-of-the-art carbon coating by in situ incorporation of functionalized carbon nanotubes. Compared with blank LiMnPO4 nanoparticles, much finer nanoparticles with higher surface area were produced in the presence of nanotubes. This observation indicates that functional nanotubes play an important role for nanoparticle nucleation, and coagulation processes. Whereas the electrical conductivity of the composite increases by 5 orders of magnitude upon addition of only 1 wt % of SWNT, the battery capacity with a value of 20 mAh/g appears low. The SWNT with their high aspect ratio are forming a percolating network through the composite at a low concentration, but do not suppress the agglomeration of LiMnPO4 nanoparticles, which limits the Li-ion mobility and leads to only modest electrochemical performance.

¹Korea University, Seoul, Korea

²Sineurop Nanotech GmbH, Stuttgart, Germany

³Toyota Motor Europe, Zaventem, Belgium

⁴Toyota Motor Corporation, Shizuoka, Japan

New carbon nanostuctures formed on the surface of carbon fiber by laser radiation

Michael Yu. Digilov¹ Yan Digilov²

Tora Texas Corp.

Rice University

We have developed a method of growing nanocarbon particles on the surface of carbon materials. To do this, the surface of carbon fibers were radiated by a laser in a carbon content gas atmosphere. A new carbon nanoparticle containing a combination of nanostructures was discovered. These new nanomaterials possess unique mechanical, electrical and thermal characteristics and can be used in a wide range of applications in different areas from new high strength materials, to photo electronics and lighting. These nanostructures have been studied using electron diffraction and high-resolution electron microscopy, and their mechanical characteristics were tested, as well.

30

Silicon Carbide Nanowires: Synthesis and Cathodoluminescence

Andrzej Huczko¹ Volodymyr Savchyn² Ivan Karbovnyk² Anatoli I. Popov³

Dept. of Chemistry, University of Warsaw, Warsaw

The betaâSiC nanowires were efficiently produced using the thermal-explosion mode of selfâpropagating high temperature combustion synthesis (SSH) from elemental Si and poly(tetrafluoroethylene) powder mixtures combusted under different operational parameters [1]. The report presents the study of one- dimensional silicon carbide structures by means of cathodoluminescence (CL) technique [2]. CL spectra of several nano 1D-SiC samples and of a reference commercially available 3C-SiC, measured at 77 K, are compared. It was demonstrated that the emission band at 1.97 eV related to irradiative transitions between the deep defect level (silicon vacancy) and the conduction band (weakly detected in the spectrum of the commercial SiC) becomes, under 10 keV electron beam irradiation, the prevailing band in CL of the purified silicon carbide nanowires. After the final stage of purification process the intensity of 1.97 eV band is almost 10 times stronger with respect to the 2.38 eV peak which, in turn, corresponds to band-to-band transition in 3C-polytype of silicon carbide. Observed behavior confirms that produced nanowires are defectsenriched. 1. A. Huczko et al., J. Phys.: Condens. Matter 19, 2007, 395022. 2. S. Bellucci et al., Radiation Measurements 42, 2007, 708.

²Dept. of Electronics, Ivan Franko National University of Lviv, Ukraine

³Institut Laue-Langevin, 38042 Grenoble, France

SFM manipulation techniques applied to graphene

<u>Stefan Eilers</u>¹ Tobias Liebig¹ Jürgen P. Rabe¹

¹Department of Physics, Humboldt University of Berlin, Berlin

Graphene is a promising candidate for future generation electronic devices. Methods which allow its structuring and its manipulation are needed for the development of possible applications. Thinness, flexibility and flatness of graphene render SFM techniques promising for single or multilayer graphene. Here we demonstrate two approaches using a scanning force microscope (SFM) tip. First, manipulation of graphene is investigated, particularly "sawing"which produces nangaps and nanoribbons as well as manipulating parts of graphene without destruction. In all these cases the manipulation is carried out on graphene in contact with SiO2 substrates. Near a graphene edge or when the graphene is small enough it can be desorbed and turned with the SFM-tip since the adsorption force between graphene and the substrate is smaller than the force to break the graphene. Second, adsorption and manipulation of DNA on an amphiphile interlayer is presented. The interlayer is needed to provide the proper DNA mobility such that it can be manipulated. It is shown that a force can be found large enough to manipulate DNA but too small to damage the graphene.

32

Actuation of arrays of vertically aligned carbon nanotubes

Johan Ek-Weis¹ Niklas Olofsson² Anders Eriksson² Eleanor E. B. Campbell¹

¹Edinburgh University, Edinburgh

Arrays of vertically aligned carbon nanotubes were grown on Mo electrodes. By applying a DC-bias we successfully actuated these arrays. This effect can be used to make varactors.

Videos of the actuation were recorded in an optical microscope. In order to study the actuation in more detail and with larger depth of focus the nanotube arrays were also actuated in a SEM.

The voltage was increased to just below the pull-in voltage, where the arrays come in contact with each other and the device is destroyed. The voltage was then lowered in order to separate the arrays and then increased again. This procedure could be repeated up to 15 times without any significant degradation.

The capacitance between the arrays was measured by measuring the s-parameters of the devices. The initial capacitance of a device was measured to 22 fF. During actuation the capacitance could reproducibly be increased by over 20%.

²Gothenburg University, Gothenburg

Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays

Michael Engel¹ Joshua P. Small¹ Mathias Steiner¹ Marcus Freitag¹ Alexander A. Green² Mark C. Hersam² Phaedon Avouris¹

¹IBM T. J. Watson Research Center, Yorktown Heights

²Department of Materials Science and Engineering, and Department of Chemistry, Northwestern University, Evanston

Thin film transistors (TFTs) are poised to revolutionize the display, sensor and flexible electronics market. Channel materials so far have been mainly organics and amorphous silicon, which have limited carrier mobilities. Single-walled carbon nanotubes have extremely high mobilities and can be solution processed, which makes thin film CNT based TFTs a natural direction for exploration. Here we address two main challenges facing CNT-TFTs: low on/off ratios because of admixture of metallic nanotubes, and the placement and alignment of CNTs over large areas. We reduce the content of metallic nanotubes to 1% by density gradient ultracentrifugation [1] confirmed by optical and electrical measurements. The deposition problem is addressed by self-assembly of nanotubes in stripes to produce dense and aligned CNT films over large areas at room temperature. Transistors fabricated on such films show good drive currents and high on/off ratios. Additionally, these devices exhibit strong photocurrents and are both photo- and electroluminescent, which hints at possible optoelectronic applications [2]. [1] Arnold et al., Nature Nano, 2006, 1(1), 60 [2] Engel et al., ACS Nano, 2008, 2(12), 2445

34

Individualization of Graphenoid Building Blocks in Aqueous Solutions

Jan Englert¹ Cordula D. Schmidt² Frank Hauke¹ Andreas Hirsch²

Due to the highly versatile bottom up approach towards well defined monodisperse graphenoid building blocks, investigations concerning the aggregation of such building blocks like hexa-peri-benzocoronenes (HBCs) may shed light into the development of methods to overcome the mutual attractive π -stacking interactions in such polyaromatic hydrocarbons.

Inspired by the research on CNT solubilisation by the use of surfactants, herein we report on the individualization of unsubstituted, highly insoluble HBC discs in water by different detergents: Sodiumdodecylbenzenesulfonate, Sodiumcholate, Sodiumdeoxycholate and amphiphilic perylenebisimides derivatives were used in combination with mild ultrasonication.

Analysis of HBC so far was only possible by means of derivatisation to overcome the intrinsic insolubility in all common solvents. Our approach abstains from direct

¹Institute of Advanced Materials and Processes, University Erlangen Nurenberg

²Department of Chemistry and Pharmacy, University Erlangen Nurenberg

chemical modification. To examine the aggregation state of the dispersed material UV/Vis absorption and photoluminescense spectroscopy were utilized. Upon applying sedimentation theory we found different decay constants for the surfactants used indicating varying efficiency for the systems under investigation.

35 Growth of carbon nanotubes on mono- and poly-crystalline Si substrates Santiago Esconjauregui 1 Stefan Hofmann 1 John Robertson 1 University of Cambridge, Cambridge

In microelectronics, carbon nanotubes (CNTs) are envisaged as interconnects in vias and between transistors. For this application, densely-packed bundles of CNTs with predefined properties and orientations must be contacted, and preferably (surface-bound) grown, onto conductive materials. Herein we report the direct growth of CNTs by catalytic chemical vapour deposition onto two conductive Si-based substrates. By systematically evaluating pre-treatment conditions on 0.5, 1, and 1.5 nm of Ni, Co, and Fe, we demonstrate the growth of CNTs with interconnects requirements onto highly doped mono- and poly-crystalline Si substrates. This growth is effectively achieved only when the catalyst materials are restructured by plasma-assisted thermal pre-treatment. In the absence of this plasma assistance, i.e., just by purely-thermal pre-treatment, only uncontrollable growth is observed. The key role of the plasma is to produce active nanoparticles at lower temperatures than those typically used in purely thermal conditions. These nanoparticles induce isotropic CNT growth in the tube length direction with high degree of homogeneity in morphology and vertical-alignment perpendicula

36 Large Scale Production of Graphene Nanoribbons by Nanowire Lithography Andrea Fasoli¹ Antonio Lombardo¹ Alan Colli² Andrea C. Ferrari¹ Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK Nokia Research Centre, c/o Nanoscience Centre, Cambridge CB3 0FF, UK

Graphene nanoribbons (GNRs) are the counterpart of nanotubes in graphene nanoelectronics. The search for a cheap, parallel and deterministic technique for practical implementation of these structures is still open. Nanowire-lithography (NWL) consists in using NWs as etch masks to transfer their one-dimensional morphology to an underlying substrate [1,2]. Here, we show that oxidised silicon NWs (SiNWs) [3] are a simple and compatible system to implement the NWL concept on graphene. The SiNWs morphology is transferred onto a graphene flake by a low-power O2 plasma in a deep-reactive-ion-etcher [4]. The process leads to conformal GNRs with diameter comparable to the overlaying NW lateral dimensions. The diameter can be further reduced by multiple O2 etching steps. Raman spectroscopy is used to characterise the structure of the resulting GNRs. Field-effect measurements show the transition to a semiconductor when low diameters are reached. The influence of trap states on the device performance is discussed.

- 1. A.Colli, et al. Nano Lett. 8, 1358 (2008)
- 2. D. Whang, et al. Nano Lett. 3, 951 (2003)
- 3. A.Colli, et al. J. Appl. Phys. 102, 034302 (2007)
- 4. A.Fasoli et al. submitted (2009)

37

Ab-initio investigation of thermo activated directional transport of hydrogen molecules inside narrow carbon nanotubes

Aleksandr S. Fedorov¹ Almas F. Sadreev¹

¹L.V. Kirensky Institute of Physics, SB RAS, Irkutsk Railway Transport University, Krasnoyarsk branch, Krasnoyarsk

The potential profiles for H2 molecule movement inside narrow single-wall carbon nanotubes ((3,3), (6,0) and (7,0)) have been calculated by DFT calculations. This potential forms a goffered potential surface with magnitude 160,1025 and 365K correspondently. We show that in these SWCNT transport of H2 molecules is given mainly by thermo activated hopping between minima of the periodic potential along the tube axis. At that the hopping rate of H2 molecules may be calculated by the Vineyard formula: $\omega = \frac{\prod_{\lambda} \omega_{\lambda}}{\prod_{\lambda} \omega_{\alpha}} \exp(-\frac{V_0}{kT})$ in which frequencies of vibrations correspond to positions of H2 at minimum and saddle point of the CNT potential. Modeling the temperature change (\sim 300K) along the SWCNT with length (\sim 1 μ km) and using model of hopping at not uniform hydrogen density inside these CNT we show that H2 molecules would move in direction of the temperature decreasing. At that we show that H2 density close the both CNT ends would differ at \sim 10 times. We hope that this effect is possible to use for build up a molecular pump driven by the temperature gradient along nanotube.

38

X-RAY DIFFRACTION STUDY OF WS2 NANOPARTICLES AND NANOTUBES INTERCALATED BY ALKALI METALS (Na, K, Rb)

Yishay Feldman¹ Frieda Kopnov¹ Alla Zak¹ Reshef Tenne¹

WS2 inorganic fullerene-like (IF) nanoparticles were subjected to intercalation with potassium, sodium, and rubidium atoms in heated sealed ampoules. The product of the intercalation process was not pure and was composed of both intercalated and nonintercalated phases. Quantitative X-ray diffraction (XRD) analysis showed that after similar intercalation treatment the IF powder contained more of the intercalated phase than the 2H-WS2 material. XRD measurements under inert conditions of the intercalated powders showed that the interlayer expansion was correlated with

¹Weizmann Institute, Rehovot

the alkali metal radius. Small increase of the a-axis was observed as well and was explained on the grounds of the WS2 band structure.

39

Sorting and transmission electron microscopy analysis of single or double wall carbon nanotubes

Romain Fleurier¹ Jean-Sébastien Lauret² Emmanuel Flahaut³ Annick Loiseau¹ LEM, CNRS, Ch tillon

Since there are many different structures of carbon nanotubes inducing different properties, several teams worked out different techniques to sort carbon nanotubes with respect to their structural properties such as diameter. However, until recently, the sorting efficiency has only been evaluated by probing optical or vibrational properties of sorted nanotubes. Since the relationship between these properties and the associated structure is not direct and not fully understood up to now, we propose here the structural analysis by TEM as a convenient and reliable way for evaluating the structural sorting of single or double wall carbon nanotubes. Furthermore, this approach allows us to determine the standard deviation of the carbon nanotube diameter distribution after sorting giving even more indications on the sorting process as well as on the carbon nanotubes optical properties (1). Possibilities and advantages of this approach will be demonstrated in the case of single walled and double walled nanotubes sorted by the gradient density technique.

(1) Fleurier et al, Adv.Func.Mater. 2008, submitted

40

Hopping in carbon based nanostructures

S. Arsenijevic¹ R. Gaal¹ L. Ciric¹ A. Magrez¹ L. Forro¹

¹Inst. of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne, Switzerland

The temperature dependence of an assembly of carbon based nanostructures like: single and multi-walled carbon nanotubes, carbon onions, carbon nanoparticles, nano-horns, nano-graphite or flakes of graphene show a charge transport by hopping. Some of these systems have a similar behavior to graphene nanoribbons, where 1D variable range hopping conductivity was evoked. A detailed analysis and modeling of the conduction mechanism in all these systems will be presented. The work is performed in collaboration with J. Coleman, R. Nesper, K. Kern and J.-P. Salvetat. It is partially supported by the European Network IMPRESS.

²LPQM ENS Cachan

³CIRIMAT/LCMIE, CNRS, Toulouse

Donor-acceptor nanocomposite structures for organic photovoltaic applica-

Konstantinos Fostiropoulos¹ Wolfram Schindler¹ Peter Lewer¹ Tayfun Mete¹ ¹Helmholtz-Zentrum Berlin GmbH, Dep. SE2, Glienicker Str.100, 14109 Berlin, Germany

The performance of organic solar cells is mainly limited by the low transport properties of the applied organic materials. Particularly in bulk heterojunction device architectures it is the charge carrier transport which needs to be improved. We applied vacuum deposition techniques to prepare devices consisting of Zn-Phthalocyanine as donor and C60 as acceptor material. Co-evaporated donor-acceptor nanocomposites (DAN) were studied particularly with regard to their feasibility in organic solar cells. By modification of the deposition conditions like substrate temperature and deposition rate we could manipulate the DAN morphology and domain size, thus optimizing the device. The crystallinity of the individual domains was studied by means of transmission electron microscopy. The influence of the domain size on the cell parameters is discussed.

42

Characterization of CNT thin-film transistors made of pristine and semiconductorenriched SWCNTs

 $\underline{\rm Shunjiro\ Fujii^1}$ Takeshi Tanaka 1 Hehua Jin 1 Yasumitsu Miyata 1 Hiroshi Suga 1 Yasuhisa Naitoh 1 Takeo Minari 1 Tetsuhiko Miyadera 1 Kazuhito Tsukagoshi 1 Hiromichi Kataura 1

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

Semiconducting single-wall carbon nanotubes (SWCNTs) are a candidate material for high-performance thin-film transistors (TFTs), because of their superior transport properties. Recently, we achieved enrichment of semiconducting SWCNT by a new separation method using agarose gel. In this work, we have fabricated a number of SWCNT TFTs using separated semiconducting SWCNTs (S-TFT) and compared the performance with that of pristine SWCNTs (P-TFT) without electrical breakdown treatment. SWCNT TFTs were fabricated by dropping a SW-CNT dispersion in N-methylpyrrolidone onto a SiO2/Si substrate covered with self-assembled monolayer of 3-aminopropyltriethoxysilane, followed by depositing Au/Cr electrodes on it. The channel length and width were 10 and 200 um, respectively. SWCNT network structures in the channels of S- and P-TFTs were confirmed to be the same by AFM observation. For both S- and P-TFTs, about 20 devices were characterized. S-TFTs achieved 100 to 1000 times higher on/off ratios than those of P-TFTs without decreasing on-state current. This result indicates that the performance of TFTs was highly improved by using high purity semiconducting

SWCNTs.

43

Optical Signature of Bundle Size Distribution in MoSIx Nanowire Dispersions

<u>Christoph Gadermaier</u>¹ Damjan Vengust¹ Dragan Mihailovic¹

Progress in nanotechnology crucially depends on molecular-scale materials with tunable physical or functional properties, yet with well-defined and controllable geometrical structure. MoSIx nanowires self-assemble into functional networks and qualify for applications as diverse as lubricant additives, field emitters, battery electrodes, (bio)chemical sensors, and as conductive or reinforcing component of composites. They disperse in many common solvents including water, where they occur in bundles of diameters ranging from a few 100 nm down to single wires (below 1 nm).

In this study we fractionated MoSIx nanowires by bundle diameter in liquid dispersion via centrifugation. We found a clear correlation between the bundle diameter distribution (obtained by statistical evaluation of TEM images of deposited material) and the optical absorption spectrum; the absorption peaks shift from 1.8 to 1.5 eV and from 2.7 to 2.4 eV with increasing diameter. The structure of the peaks suggest that the samples are heterogeneous, consisting of at least two phases. This is a breakthrough for nanowire wet processing, since it tremendously speeds up the characterisation of dispersions.

44

ELECTRON MICROSCOPY AND XPS STUDY OF WS2 NANOPARTICLES AND NANOTUBES INTERCALATED BY ALKALI METALS

 $\frac{\rm Frieda~Kopnov}^1$ Konstantin Gartsman 1 Ronit Popovitz-Biro 1 Ayelet Vilan 1 Hagai Cohen 1 Alla Zak 1 Reshef Tenne 1

¹Wezmann Institute of Science, Rehovot, Israel

WS2 inorganic fullerene-like nanoparticles and nanotubes were subjected to intercalation with potassium, sodium, and rubidium atoms in heated sealed ampoules. The product of the intercalation process was not pure and was composed of both intercalated and nonintercalated phases. Electron microscopy measurements of the intercalated particles showed the interlayer expansion of outer layers that was correlated with the alkali metal radius. The XPS analysis of the rubidium intercalated material showed a rise in the Fermi energy as a result of the intercalation, endowing the originally p-type nanoparticles an n-type character.

¹Department of Complex Matter, Jozef Stefan Institute, Ljubljana

Tunable Graphene dc Superconducting Quantum Interference Device

<u>Çağlar Girit</u>¹ V. Bouchiat² O. Naaman³ Y. Zhang¹ M. F. Crommie¹ A. Zettl¹ I. Siddiqi³

¹Department of Physics, University of California, Berkeley

Graphene exhibits unique electrical properties on account of its reduced dimensionality and "relativistic"band structure. When contacted with two superconducting electrodes, graphene can support Cooper pair transport, resulting in the well-known Josephson effect. We report here the fabrication and operation of a two junction dc superconducting quantum interference device (SQUID) formed by a single graphene sheet contacted with aluminum/palladium electrodes in the geometry of a loop. The supercurrent in this device can be modulated not only via an electrostatic gat but also by an applied magnetic field – a potentially powerful probe of electronic transport in graphene and an ultrasensitive platform for nanomagnetometry.

46

Torsional Stick-Slip Behavior in WS2 Nanotubes

<u>Ohad Goldbart</u>¹ K. S. Nagapriya¹ Ifat Kaplan-Ashiri¹ Gotthard Seifert² Reshef Tenne¹ Ernesto Joselevich¹

¹Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

²Physikalische Chemie, Technische Universitat Dresden, D-01062 Dresden, Germany

The mechanical properties of WS2 Nanotubes are of great interest from both scientific and application point of view. Their perfect crystalline structure results in superior mechanical properties compared to bulk materials. Here we present measurements of torsion and shear modulus of WS2 nanotubes. A suspended nanotube pedal device clamped at the two ends was fabricated using e-beam lithography and gold evaporation. The nanotube was twisted by pressing the pedal with an AFM tip and force curves were recorded. We experimentally observed atomic scale torsional stick-slip behavior in these individual WS2 nanotubes. We found that when an external torque is applied to a WS2 nanotube, all its walls initially stick and twist together, until a critical torsion angle, at which the outer wall slips and twists around the inner walls. This is followed by a series of secondary stick-slip torque oscillations. We present a theoretical model based on DFTB calculations, which explains the torsional stick-slip behavior in terms of a competition between the effects of the in-plane shear stiffness of the WS2 walls and the inter-wall friction arising from the atomic corrugation of the interaction between WS2 walls

²Institut Neel, CNRS/UJF

³Quantum Nanoelectronics Laboratory, University of California, Berkeley

ELECTRONIC AND MECHANICAL PROPERTIES OF CHEMICALLY DERIVED GRAPHENE

 $\underline{\text{Cristina Gomez-Navarro}^1}$ Marko Burghard 1 Klaus Kern 1 1 Max-Planck-Institute fuer Festkoerperforschung, Stuttgart

The peculiar electronic properties of graphene have attracted great interest in the past few years. However the currently existing methods to obtain graphene sheets donât enable large-scale production. Thus alternative production methods are highly desirable. Here we report on the electronic and mechanical properties of single graphene sheets obtained via chemical reduction of graphite oxide.

We find that reduced single layers exhibit room temperature field effect mobility up to 1000 cm²/Vs. The structure of the sheets is best described by intact, nanometer-sized graphitic domains separated by defect clusters, which results in hopping conduction as the dominant charge-transport mechanism.

Towards their mechanical characterization we have performed AFM indentation experiments on free-standing single layers. For single layers we find a mean elastic modulus of 0.2TPa. Another interesting feature of these monolayers is that their elastic modulus scales inversely with their electrical conductivity. Furthermore, built-in tensions are found to be significantly lower compared to mechanically exfoliated graphene.

Strategies for improving sample conductivity will be also discussed.

48

CVD Growth of Carbon Nanotubes Using Molecular Nanoclusters as Catalyst

<u>Karin Goß</u>¹ Akashdeep Kamra¹ Christian Spudat¹ Carola Meyer¹ Paul Kögerler¹ Claus M. Schneider¹

¹Institut für Festkörperforschung (IFF-9), Forschungszentrum Jülich, Jülich

For transport measurements on Carbon Nanotubes (CNTs) and functionalized derivatives such as peapods isolated single-walled carbon nanotubes (SWNTs) are favourable. With the chemical vapour deposition (CVD) method such CNTs can be grown directly on substrates and their quality is governed by the catalyst. Our experiments are motivated by a possible constriction of the CNT diameter distribution, which could facilitate the synthesis of peapods. Hence we investigated CNTs grown with molecular Mo₇₂Fe₃₀ nanoclusters as a catalyst on different substrates by AFM, SEM and Raman spectroscopy. In comparison to our standard catalyst, which is composed of Fe clusters agglomerated at alumina nanoparticles, the molecular nanoclusters could enable the growth from highly defined catalyst particles. Although CNTs can be grown successfully in general, a chemical reaction of the catalyst with substrate surfaces may inhibit the growth in certain cases. Additionally a possible role of the oxidation state of Mo for the growth mechanism is discussed.

Electronic and vibronic properties of pristine and doped graphene layers

<u>Alexander Grüneis</u>¹ Denis V. Vyalikh² Claudio Attaccalite³ Angel Rubio³ Riichiro Saito⁴ Thomas Pichler⁵ Jorge Serrano⁶ Alexei Bosak⁷ Michael Krisch⁷ Ludger Wirtz⁸

¹University of Vienna, Austria IFW-Dresden, Germany

²TU-Dresden, Germany

³ETSF, Spain

⁴Tohoku University, Japan

⁵University of Vienna, Austria

⁶University of Barcelona, Spain and ESRF, France

⁷ESRF, France

⁸University of Lille, France

In realistic graphene devices, the electronic properties are modified by interlayer coupling, substrate interaction or electron-electron correlation effects. Studying stage one graphite intercalation compounds using a combined angleâresolved photoemission spectroscopy (ARPES) and theory approach is an elegant way around these problems. Our ARPES data highlight that the full experimental Dirac cone of graphene can be determined. The kink in the quasiparticle dispersion is compared to the phonons from inelastic x-ray scattering (IXS) and the energy is in good agreement to the observed Kohn anomaly for the TO phonon branch close to K point. This reflects, that electron phonon coupling can indeed be seen in both the quasiparticle and phonon dispersion relations. Based on our ARPES and IXS data we provide a new set of tight-binding (TB) parameters for efficient calculation on the quasiparticle and phonon dispersions in pristine and doped few-layer graphene and graphite including electron-electron correlations. This is the first set of TB parameters that can describe both the low and high energy properties relevant for transport and optical spectroscopy experiments, respectively.

50

The Effect of Pressure on Graphene-Related Materials

Marcos H. D. Guimaraes¹ Alem-Mar B. Gonçalves¹ Bernardo R. A. Neves¹ Rodrigo G. Lacerda¹ Mario S. C. Mazzoni¹

¹Departamento de Fisica - ICEx, Universidade Federal de Minas Gerais, Belo Horizonte - Brazil

In this work we combine theoretical and experimental techniques to investigate graphene-related materials. From the theoretical point of view, we address the interplay between structural and electronic properties of graphene layers, ribbons and epitaxial graphene. We study the structural rearrangements of a crossed junction of ribbons (graphene on top of epitaxial graphene) taking into account the substrate effect. Effects of external pressure are also considered, and the change in the

electronic states are described. Similar studies are conducted for bi- and trilayer graphene under pressure. The effects of doping, particularly with Nitrogen, on the structural and electronic properties (with and without pressure) are discussed. The first-principles calculations are based on the Pseudopotential Density Functional Thoery(DFT) within the Local Density Approximation(LDA) for the exchange-correlation functional, as implemented in the SIESTA program. We propose and perform some experiments based on the application of pressure with an AFM tip on the samples, and we also perform Electrostatic Force Microscopy(EFM) images to study the structural end electronic modifications of the material.

51

Group theory analysis of electrons and phonons in N-layer graphene systems

 $\underline{\text{Leandro Malard}}^1$ Daniela L. Mafra 1 Marcos H. D. Guimaraes 1 Mario S. C. Mazzoni 1 Ado Jorio^1

¹Departamento de Fisica, Universidade Federal de Minas Gerais (UFMG)

In this work we study the symmetry properties of electrons and phonons in graphene systems as function of the number of layers. We derive the selection rules for the electron-radiation and for the electron-phonon interactions at all points in the Brillouin zone. By considering these selection rules, we address the double resonance Raman scattering process. The monolayer and bilayer graphene in the presence of an applied electric field are also discussed.

52

Effects of gamma irradiation on carbon nanotubes and their composites with nanodiamond

S. Gupta¹ A. M. Scuttler¹ M. Muralikiran¹ J. Farmer²

Across the main radiation environments including heavy ions, gamma and proton radiation, nanoscale materials may outperform their conventional counterparts, where the improvement is attributed to nanoscale functionality. While diamond is known being radiation hard, carbon nanotubes are also of great interest owing to structural (high aspect ratio) properties and apparent radiation resiliency. For âharshâ radiation environment applications, it is critical to demonstrate their structural integrity and optimal performance. We studied single- and multiwalled nanotubes and composites with nanodiamond forming truly trigonal-tetragonal nanocomposites. They were subjected to gamma irradiation of 50, 100 and 10³ kGy and analyzed prior to and post-irradiation using various analytical tools. Although the structure and defects dynamics in carbon nanostructures remain elusive, this

¹Department of Physics, Politecnico di Torino, Italy and ECE Department, University of Missouri, Columbia (USA)

²Missouri University Research Reactor, University of Missouri, Columbia (USA)

investigation imparts insights into the gamma radiation induced events. It is found single-walled nanotubes improved their radiation resilience with nanodiamond and the radiation-induced microscopic defects aggregation/ amorphization, and bonding re-arrangement collectively known as Wigner effect are discussed.

53

Laser beam as a simultaneous tool and an in situ probe for a CNTs growth by a Laser Assisted CVD method

Miroslav Haluska¹ Yves Bellouard¹ Zdenek Hurak² Andreas Dietzel¹

¹Micro Nano Scale Engineering, Eindhoven University of Technology, Eindhoven ²Department of Control Engineering, Faculty of Electrical Engineering, CTU, Praha, Czech republic

We report on a flexible and simple method for a local CNTs growth and its in situ monitoring. The method of Laser Assisted Chemical Vapor Deposition (LA CVD) uses a laser beam to heat locally the substrate. The objective is to prepare a predefined type of CNT assemblies at selected locations on the substrate while preserving the unexposed part of the substrate from a high temperature exposure. The LACVD reactor contains temperature and pressure sensors, three in situ optical detectors, a horizontal substrate holder and an optical assembly that focuses the laser beam with the wavelength of 800 nm on the substrate at a 35 deg incidence angle. One optical detector records the intensity of light reflected under 35 deg from the sample. Other two detectors monitor visible and infra red light emitted by the sample, respectively. We investigated the correlation between in situ detected optical signals and ex situ characteristics obtained from SEM and Raman spectroscopy on samples for which the growth process was stopped at different stages. The obtained information enables us to control the growth process for producing either 2D horizontal networks or 3D vertically aligned forests of CNTs

54

Defect Induced Photoluminescence from Dark Excitonic States in Individual Single-Walled Carbon Nanotubes

<u>Hayk Harutyunyan</u>¹ Tobias Gokus² Alexander A. Green³ Mark C. Hersam³ Maria Allegrini¹ Achim Hartschuh²

Most of the excitonic states formed by the strongly correlated electron-hole pairs in carbon nanotubes are non-emissive. The selection rules for one photon absorption and emission are imposed on the excitonic states by symmetry and spin conser-

¹Dipartimento di Fisica, Universita' di Pisa, Pisa, Italy

²Department Chemie und Biochemie and CeNS, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany

³Department of Materials Science and Engineering, Department of Chemistry, Northwestern University, Evanston, Illinois, USA

vation laws. We show experimentally that these rules can be relaxed by locally perturbing the electronic structure of the nanotube. We introduced defects in the sidewalls of single nanotubes by intense pulsed laser excitation and observed modified photoluminescence (PL) spectrum with new low energy emission bands [1]. Satellite peaks for different (6,4) and (5,4) nanotubes have redshifts of 30-60 meV, attributed to the $_0A_0^+$ states, and 110-190 meV. These PL bands with large energy separation also emerge after the treatment of the nanotubes with aqueous solution of gold. We assign this emission to the triplet state where the spin polarized states induced by the defect creation or metal adatoms facilitate the intersystem crossing. The triplet state has up to two orders of magnitude longer lifetime (\sim 170ps) than the bright singlet exciton.

[1] H. Harutyunyan et al., arXiv:0812.1040v1.

55

Quantitative composition of a single-walled carbon nanotube sample: Raman scattering vs. Photoluminescence

Sebastian Heeg¹ Cinzia Casiraghi¹ Stephanie Reich¹ Fachbereich Physik, Freie Universität Berlin, Berlin

The growth processes of Carbon Nanotubes (CNTs) yield samples containing tubes with a large variety of different chiralities. The qualitative composition of the CNTs product has been revealed by Raman scattering [1] and by Photolumine-scence Emission (PLE) [2]. The quantitative composition remains a task in CNT characterization. We address this problem by comparing the relative PLE intensities of a subset of semiconducting nanotubes with the relative intensities of the according Radial Breathing Modes obtained by Raman scattering. The PLE measurements were performed by dissolving the HiPCO grown nanotubes in aqueous solution using sodium dodecylbenzene sulfonate as surfactant. Raman Spectroscopy was performed by depositing the tubes from the solution on a silicon substrate by spin-coating. The presence of the CNTs was confirmed by atomic force microscopy. We show that the two methods yield significantly different ratios. Correcting these ratios by theoretical predictions of the processes involved, we confirm by both the methods that one carbon nanotube species dominates the population.

- [1] J. Maultzsch et al., Phys Rev B. 2005
- [2] S.M. Bachilo et al., Science, 2002

56

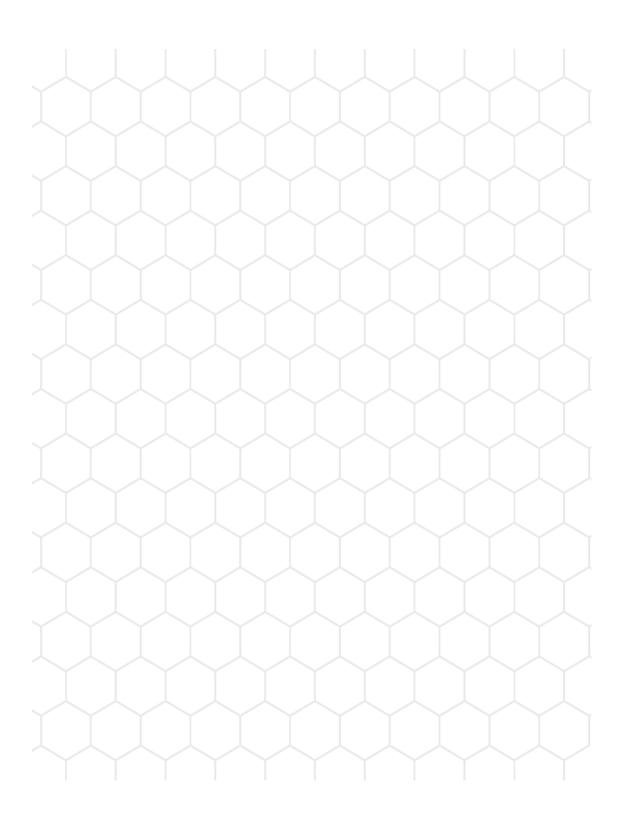
The Role of Bundles in Separating Metallic from Semiconducting Single Walled Carbon Nanotubes via Density Gradient Centrifugation and Electrophoresis

 $\underline{\underline{\mathrm{Kai}\ \mathrm{Moshammer}}}^1$ Frank $\mathrm{Hennrich}^1$ Manfred M. Kappes^1

 $^1{\rm Institut}$ fuer Nanotechnologie, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen

Separating SWNTs by electronic type has become a flourishing research field and enrichment of m-SWNTs has been achieved by various techniques including dielectrophoresis and density gradient centrifugation (DGC). All such separation methods make use of liquid suspensions, typically of individualized and isolated tubes in water. Many studies have used surfactants, such as sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS) or sodium cholate (SCho) to disperse SWNTs and the yield of individualized tubes depends on the combination of starting raw SWNT material, surfactant, ratio of surfactant to SWNTs starting concentration and centrifugation conditions. In the current work we demonstrate that by controlled aggregation of s-SWNTs in suspension it is possible to separate m-from s-SWNTs either by DGC due to differences in densities or by gel electrophoresis (EP) due to differences in bundle sizes. Due to the sonication conditions used in this work m-SWNTs are preferentially suspended to individuals and s-SWNTs remain in bundles. Evidence is provided by optical absorbance spectroscopy and atomic force microscopy (AFM).

57 Combined Electronic Transport and Raman Measurements on Individual Single-Wall CNTs


 $\underline{\rm Olli\ Herranen}^1$ Jyri Rintala
² Andreas Johansson^1 Mika Petterson² Markus Ahlskog^1

¹Nanoscience Center, Department of Physics, University of Jyväskylä, Finland

²Nanoscience Center, Department of Chemistry, University of Jyväskylä, Finland

Single-wall carbon nanotubes (SWCNT) are very good candidates for future nanoscale circuitry because of their unique electronic properties. Therefore it is important to investigate their properties. We have performed both Raman and electronic transport measurements on individual single-wall carbon nanotubes over a relatively broad diameter range (0.8-2.7 nm). Single nanotube devices were made on top of a highly doped Si wafer covered with 300 nm thick SiO₂. The Si wafer was used as a backgate and the ends of the CNTs were connected by electrodes of Pd. Raman measurements were performed using either a 632.8 nm or a 532 nm laser as the excitation source. From the G-band in the Raman spectra we could determine if the tubes are metallic or semiconducting, and when the RBM mode was visible, it gave us a way to deduce the chiral indices of the tubes. The electronic structure of the same nanotubes was further probed by transport measurements made at cryogenic temperatures. From the measurements we could e.g. estimate the band gap of the semiconducting nanotubes. The transport and Raman measurements where consistent and confirmed each other in all cases.

Poster session Monday, March 9

SINEUROP Nanotech GmbH

Private R&D Lab in Stuttgart Founded by Siegmar Roth and his Team www.sineurop-nanotech.com

NANOTUBE PRODUCTION single and multi ARC DISCHARGE LASER ABLATION CHEMICAL VAP DEPOS

Development of Applications
Transparent Conducting Films
Electromagnetic Shielding
Heating Elements
Composites

COOPERATIONS

Fraunhofer TEG Stuttgart Max Planck Inst f Festkörperforschung

Nanotech Alliance:

SINEUROP Nanotech GmbH Stuttgart Danubia NanoTech s.r.o. Bratislava Shanghai Yangtze Nanomaterials Co., Ltd. Nanomedical Sciences, Winston-Salem, NC

Graphene II and theory of carbon nanotubes

8:30 – 9:00	J. Hone, US Graphene mechanics, tribology, Raman spectra under strain, and NEMS.
9:00 - 9:30	K. Kern, DE
9:30 – 10:00	Doping effects in pristine and epitaxial graphene J. C. Meyer, DE
	Microscopic studies of graphene
10:00 – 10:30	Coffee break
10:30 – 11:00	T. F. Heinz, US
11:00 – 11:30	Optical spectroscopy of single and few-layer graphene E. Andrei, US
11.00 – 11.30	Scanning tunneling spectroscopy and transport measure- ments in suspended graphene
11:30 – 12:00	A. C. Ferrari, UK
	Raman spectroscopy of graphene under uniaxial strain
12:00 – 17:00	Mini Workshops
17:00 – 18:30	Dinner
10:20 10:00	M. Domnianović, DC
18:30 – 19:00	M. Damnjanović, RS Classification and diffraction of quasi one-dimensional crystals
19:00 – 19:30	C. Ambrosch-Draxl, AT
	NaPhoD - nano-hybrids for photonic devices
19:30 – 20:00	S. A. Maksimenko, BY Electrodynamics of carbon nanotubes: principles, device ap-
	plications and open questions
20:00 - 21:00	Poster Session II – TUE

Tuesday, March 10

Graphene mechanics, tribology, Raman spectra under strain, and NEMS.

<u>James Hone</u>¹ Changgu Lee¹ Xiaoding Wei¹ Mingyuan Huang¹ Hugen Yan¹ Sami Rosenblatt¹ Changyao Chen¹ Kirill Bolotin¹ Jeffrey Kysar¹ Horst Stormer¹ Tony F. Heinz¹

¹Columbia University, New York

This talk will discuss recent experimental results in four areas related to the mechanics of graphene. First, we have used AFM nanoindentation to measure the elastic modulus and ultimate strength of graphene films. The data show graphene to be the strongest material ever measured, with an ultimate strain level near 25 percent; the nonlinear elasticity matches well with theoretical models. Second, the measured frictional properties of graphene show a strong dependence on the number of layers, and reveal the atomic lattice orientation. Third, measurements of the Raman spectrum of graphene under uniaxial strain reveal pronounced redshifts, and a splitting of the G mode that is related to the breaking of the symmetry of the graphene lattice. Fourth, we have fabricated graphene NEMS resonators, and used an electromechanical mixing technique to read out their motion. The devices show robust signals, and pronounced shifts in response to mass loading.

9:00

Doping effects in pristine and epitaxial graphene

Klaus Kern

Max-Planck-Institut für Festkörperforschung, Stuttgart and Ecole Polytechnique Fédérale de Lausanne

Graphene is emerging to be an important electronic material due to a number of interesting physical properties â such as strict two-dimensionality, peculiar band-structure and high carrier mobility â making it highly promising for a variety of applications. Towards this goal, it is important to have a clear understanding of the electronic properties of graphene. Especially, the microscopic understanding of metal-graphene contacts is vital for the successful realization of novel devices. We have studied the electronic structure of pristine and epitaxial graphene and the effect of metal contacts by integral and local methods. Using low-temperature scanning tunneling microscopy we were able to characterize the quasipaticle chirality in epitaxial graphene. Upon deposition of metals we observe a significant charge transfer, changing the local electronic structure. The charge transfer at metal-graphene interfaces is further studied by scanning photocurrent microscopy and angle-resolved photoemission spectroscopy. From these experiments guidelines for the tuning of the electronic properties of graphene by the right choice of metal can be drawn.

Microscopic studies of graphene

J. C. Meyer¹ A. Chuvilin¹ G. Algara-Siller¹ S. Kurasch¹ J. Biskupek¹ U. Kaiser¹ C. O. Girit² M. Crommie² A. Zettl² C. Kisielowski³ R. Erni³ M. D. Rossell³ ¹Materialwissenschaftliche Elektronenmikroskopie, Universität Ulm, Ulm ²Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ³National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Freely suspended mono-layer graphene is the thinnest possible membrane that is conceivable with currently known materials. Yet, it is remarkably stable under high-energy electron irradiation and thus opens unprecedented opportunities for electron microscopic studies. On the one hand, the graphene membrane structure and its defects are of outstanding interest for science and applications of this promising new material. Static deformations, topological defects, various vacancy configurations or dislocations are detected by transmission electron microscopy (TEM). On the other hand, graphene membranes can serve as a perfect sample support for transmission electron microscopy. Its contribution to the TEM image signal can be filtered out completely and adsorbed atoms and molecules on the graphene sheet can be imaged as if they were suspended in free space. The synthesis, applications and numerous examples of conventional and aberration-corrected electron microscopic results are presented. As an outlook, the use of atomically thin membranes for lowest-voltage electron microscopy and challenges and promises in using graphene as a molecular support are briefly discussed.

Optical spectroscopy of single and few-layer graphene

Tony F. Heinz

Department of Physics, Columbia University, New York USA

Optical spectroscopy provides a powerful tool to probe the structure and dynamics of electronic excitations in graphene. As the most basic measurement, we have characterized the optical absorption of single-layer graphene. Like the Manchester group, we find a spectrally flat absorbance from 0.5 eV to the visible, with a magnitude of $\pi\alpha=2.3\%$, where α is the fine structure constant. At lower photon energies, however, we see departure from this universal behavior associated with the effect of finite carrier concentration. Analogous results have been obtained for few-layer graphene samples. With increasing layer number, we observe the onset of new interband transitions. We can describe these results in terms of the folded 3D graphite band structure.

Femtosecond spectroscopy permits probing the dynamics of these excitations. After creation of electron-hole pairs, equilibration of the carriers among themselves and with strongly-coupled optical phonons occurs on a sub-picosecond time scale, while full thermalization develops on the picosecond time scale. On a still slower time scale, we can characterize the heat flow into the substrate.

11:00

Scanning tunneling spectroscopy and transport measurements in suspended graphene

Eva Andrei

Rutgers University

The recent discovery of methods to isolate graphene (a one-atom thick layer of crystalline carbon) has opened an extraordinary arena for new physics and applications stemming from charge carriers that are governed by quantum-relativistic dynamics. Because of the 2-dimensinal nature of graphene the properties of its relativistic charge carriers are easily obscured by environmental disturbances such as potential fluctuations induced by insulating substrates. I will describe scanning tunneling spectroscopy^{1,3} and transport^{2,4} experiments on suspended graphene samples which are decoupled from substrate fluctuations. Our findings include direct observation of the Landau levels, measurement of the Fermi velocity, and evidence for electron-phonon and electron-electron interactions. In addition we find that, in contrast to non-suspended samples, the suspended samples show Quantum Hall plateaus associated with interactions leading to valley-splitting appearing already at very low fields.

1.G. Li, E.Y. Andrei - Nature Physics, 3, 623 (2007)

2.X. Du, G. Li, A. Barker, E. Y. Andrei, Nature Nanotecnology 3, 491 (2008)

3. G. Li, A. Luican, E. Y. Andrei arXiv:0803.4016

4.X. Du, I. Skachko, E.Y. Andrei, PRB 77,184507 (2008)

Raman spectroscopy of graphene under uniaxial strain

<u>Andrea C Ferrari</u>¹ T. M. G. Mohiuddin² A. Lombardo¹ R. R. Nair² A. Bonetti¹ G. Savini¹ R. Jalil² N. Bonini³ D. M. Basko⁴ C. Galiotis⁵ N. Marzari³ K. S. Novoselov² A. K. Geim²

¹Engineering Department, University of Cambridge, Cambridge

 $^2\mathrm{Department}$ of Physics and Astronomy, Manchester University, Manchester UK

³Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

⁴Laboratoire de Physique et Modelisation des Mileux Condenses, Universite Joseph Fourier and CNRS, Grenoble, France

⁵FORTH ICEHT and Materials Science Dept., University of Patras, Patras, Greece

Raman spectroscopy is a powerful tool for graphene characterisation [1] Here we show the effects of uniaxial strain [2]. The E2g mode splits in two, one polarized along the strain and the other perpendicular. This splits the G peak in G+ and G-, similar to curvature for the nanotube G peak. Their intensities depend on light polarization, allowing the determination of the graphene crystallographic orientation [2]. We study the Gruneisen parameters for the G, D and Dâ peaks [2]. These allow us to reconcile previous experiments on graphite and carbon fibres, and are the starting point to understand the effects of strain on nanotube phonons. We then discuss how discriminate the effects of strain on the Raman spectrum from disorder and doping [3-5]. We also show how the D peak probes gap opening in chemically modified graphene [6], and present evidence of photoluminescence in nanostructured graphene.

- 1 A. C. Ferrari et al Phys. Rev. Lett. 97 187401 (2006)
- 2 T. M. G. Mohiuddin et al arXiv:0812.1538
- 3 S. Pisana et al. Nature Mat 6 198 (2007)
- 4 A. Das et al Nature Nano $3\ 210\ (2008)$
- 5 C. Casiraghi et al. Appl. Phys Lett. 91 233108 (2007)
- 6 Elias et al. arXiv:0810.4706

18:30

Classification and diffraction of quasi one-dimensional crystals

Milan Damnjanović¹ Tatjana Vuković¹ Ivanka Milosević¹

There are fifteen elementary conformation classes out of which any regular (i.e. helically periodic) quasi one dimensional structure, like nanotube or stereoregular polymer is built. For each of them the full symmetry, described by one of the line groups, is determined and used to find the diffraction intensity distribution within kinematical model. It is shown that the diffraction intensity distribution is a pro-

¹University of Belgrade, Belgrade

duct of the atomic scattering amplitude (comprising the physical information on the type of the system) and the geometrical factor, which is easy to calculate form the full symmetry.

The possible diffraction patterns are discussed, and their features are analyzed in order to be able to determine the structure of any quasi one dimensional system by diffraction. In particular, single wall carbon nanotubes themselves are the elementary systems (belonging to different conformation classes depending on their chirality). It is shown that the obtained results enable unique characterization of carbon nanotubes by diffraction measurements.

NaPhoD - a nano-hybrids for photonic devices

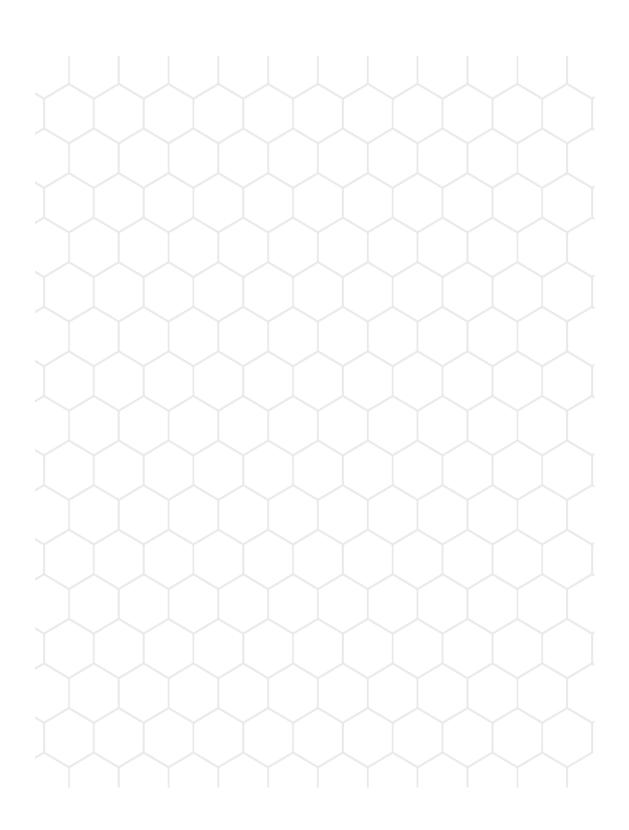
Claudia Ambrosch-Draxl

Chair of Atomistic Modelling and Design of Materials, University of Leoben, Leoben

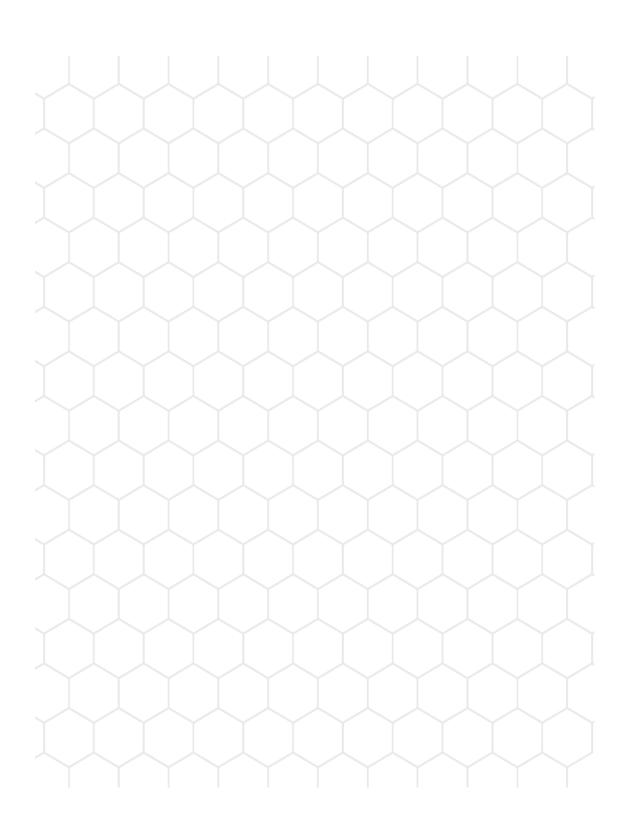
Nano-hybrid systems composed of a photoactive organic molecule (pea) inside the cage of a single wall carbon nanotube (pod) represent the realization of new nanosize photonic devices with tunable emission. Conjugated rigid rod molecules are widely studied for their optical properties. Due to their size they are suitable for the inclusion in SWNTs, being optimal candidates for emitting in the visible spectral range. Such peapods have been synthesized and characterized using experimental and theoretical techniques. As an example, oligothiophenes were encapsulated by means of low-pressure gas-phase manipulation. The presence of the pea inside the carbon cage was proven by Raman spectroscopy, while transmission electron microscopy images confirmed their endohedral position and acquired information on their relative orientation with respect to the nanotube walls. First-principles calculations based on density functional theory could reveal the optimal diameter of the tube for the encapsulation, the orientation of the molecule inside the tube, as well as the binding energies. The ab-initio approaches also allow for an analysis of the peapods' electronic structure and optical properties.

19:30

Electrodynamics of carbon nanotubes: principles, device applications and open questions


Sergey A. Maksimenko¹ Gregory Y. Slepyan¹

¹Institute for Nuclear Problems, Belarus State University, Minsk


A research discipline â nanoelectromagnetics â is introduced as a synthesis of macroscopic electrodynamics and microscopic theory of electronic properties of different nanostructures exemplified by carbon nanotubes (CNTs). A strong slowing down of surface waves is demonstrated and the concept of nanotube as a nanowaveguide in the IR and THz ranges is introduced. An analysis of the scattering pattern and the absorption cross-section of finite-length CNTs and CNT bundles is presented. Comparison with experimental results is carried out allowing physical interpretation of low-frequency absorption band observed in experiments. Potentiality of CNTs as interconnectors is demonstrated. Antenna properties of CNTs are described and the thermal radiation of isolated CNT is shown to be clearly nonmonotonous allowing the thermal antenna concept. Strong local field enhancement is predicted to be inherent to metallic CNTs in the near-field zone providing necessary mechanism for far-IR and THz near-field optics. The idea of CNT as molecular analog of FEL is proposed and discussed. The problem of spontaneous radiation of an excited atom in CNT is considered as a possible mechanism of CNT antenna excitation. Prospective problems of electrodynamics of CNTs are formulated and discussed.

Graphene II and theory of carbon nanotubes

Tuesday, March 10

Aharonov-Bohm effect in a side-gated graphene ring

 $\underline{\text{Magdalena Huefner}}^1$ Françoise Molitor Alessandro Pioda Arnhild Jacobsen Christoph Stampfer Thomas Ihn Klaus Ensslin

¹Solid State Physics Laboratory, ETH Zurich, Zurich

Over the last years graphene has received a lot of attention in both theory and experimental research. Although there are many publications dealing with constrictions and dots in a broad variety, little research has been done on graphene rings.

We present four-terminal magnetoresistance measurements on a side-gated ring structure etched out of a single-layer graphene flake. Aharonov-Bohm oscillations are observed in both the two- and the four-terminal resistances. The best visibilities are around 13%.

Furthermore the traces are in accordance with the Onsager theorem showing G(B) = G(-B) symmetry. The ring radius derived from the oscillation period agrees with the average geometric radius of the ring of 275nm.

By changing the voltage applied to the side gates, we are able to change the relative phases of the two alternative paths, and induce phase jumps of π . The same effect can be obtained by changing the applied back gate voltage. The voltage changes needed on the gates to introduce such phase jumps are consistent with the relative lever arms of the gates.

2 Dispersion of Single Walled Carbon Nanotubes using Synthetic Oligonucleotides

J. Marguerite ${\rm Hughes^1~Helen~Cathcart^1~JN~Coleman^1}$

Both synthetic oligonucleotides and natural ds-DNA have been shown to be effective at dispersing single walled carbon nanotubes (SWNTs) in water.In this study, HiPCO SWNTs were dispersed in H2O using dA15, dT15, dC15 and dG15,and the solutions were monitored over several weeks using absorption, near-IR photoluminescence (NIR-PL) and circular dichroism (CD) spectroscopy, atomic force microscopy (AFM),and zeta potential in order to compare experimentally obtained dispersion efficiencies to those calculated theoretically.In line with theoretical predictions, the pyrimidines displayed greater dispersion efficiency than the purines,with the dT15 performing strongest in terms of debundling and wrapping,whereas the dA15/SWNT solution was observed to re-aggregate over time, perhaps due to self-stacking of the base in solution.Also, as previously seen for dispersions of SWNT in ds-DNA, quenching of the PL is initially observed and reappears over a number of days: the rate at which the PL reappears and its subsequent intensity are direct indicators of the dispersion efficiency; these results are borne out by spectroscopic

¹School of Physics/CRANN, Trinity College Dublin, Dublin 2, Ireland

analysis and by the mean diameters of the SWNT/DNA hybrids over time.

3 Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

 $\underline{\text{Martin Hulman}}^1$ Viera Skakalova
² Arkady V. Krasheninnikov³ Siegmar Roth² 1 Danubia Nano
Tech, Bratislava, Slovakia

Free standing films of single-wall carbon nanotubes were irradiated with energetic ${\bf N}^+$ and ${\bf C}^{4+}$ ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the ${\bf C}^{4+}$ irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

4 Electron spin properties of La@C₈₂ in empty fullerene matrices

Yasuhiro Ito¹ Jamie H. Warner¹ Mujtaba Zaka¹ Takayuki Aono² Noriko Izumi² Haruya Okimoto² John J. L. Morton² Hisanori Shinohara² G. Andrew D. Briggs² ¹Quantum Information Processing IRC, Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom.

²Department of Chemistry and Institute for Advanced Research, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan.

Mono-metallofullenes $M@C_{82}$ have attractive magnetic properties which can be applied to quantum information processing. Furthermore, $M@C_{82}$ molecules have great potential as building blocks for solid state quantum nanodevices. The ESR spectrum of a radical electron on C_{82} cage of $La@C_{82}$ in solution can be identified by its hyperfine interaction with I=7/2 of ^{141}La . The hyperfine structure (hfs) of solid $La@C_{82}$ has not been reported because of the exchange and spin-spin interactions between $La@C_{82}$ molecules. Here, we report the concentration dependent ESR properties and hfs of $La@C_{82}$ diluted in various empty fullerene matrices. The ESR data suggest that the intermolecular dipole-dipole interaction between $La@C_{82}$ molecules can be controlled by changing the concentration of $La@C_{82}$, and furthermore that $C_{82}(C_{2}(3))$ is the best matrix to disperse $La@C_{82}$. The dispersion ability of empty fullerene matrices depends on the cage size of empty fullerenes. $La@C_{82}$ is especially difficult to disperse in a C_{60} matrix because of the large difference in cage size.

²Max-Planck Institut für Festkörperforschung, Stuttgart, Germany

³Materials Physics Division, University of Helsinki, Finnland

Investigation of N@C $_{60}$ and N@C $_{70}$ stability under high pressure and high temperature conditions

 $\underline{\text{Agnieszka Iwasiewicz-Wabnig}^1}$ Kyriakos Porfyrakis 1 G. Andrew D. Briggs 1 Bertil $\overline{\text{Sundavist}^2}$

¹Department of Materials, University of Oxford, OX1 3PH Oxford, United Kingdom

Endohedral fullerenes encapsulating single nitrogen atoms (N@C $_{60}$ and N@C $_{70}$) are spin active, with exceptionally long electronic spin coherence times. Due to the high reactivity of nitrogen, the stability of these molecules at elevated temperatures is poor, drastically restricting the possibilities for chemical treatment. In the first part of this study, N@C $_{60}$ and N@C $_{70}$ in toluene solutions were subjected to high pressure up to 0.8 GPa at room temperature and annealed for 1, 2 or 24 hours. In the second part of the study, high pressure was complemented by elevated temperatures. In each case the number of surviving molecules was evaluated comparing spin counts of ex-situ electron paramagnetic resonance (EPR) spectra before and after the treatment. The stability of N@C $_{60}$ and N@C $_{70}$ under high pressure and high temperature conditions is discussed in comparison to previous studies under normal pressure.

6

1D supramolecular aggregates of PAHs and 2D assemblies of phenylene-ethynylene-macrocycles on HOPG

Stefan-S. Jester¹ Natalya Shabelina¹ Xia Hong Cheng¹ Sigurd Höger¹ ¹Kekulé-Institut für Organische Chemie und Biochemie, Universitaet Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany

Small polyaromatic systems, such as dibenzonaphthacenes, may be thought as small models for graphenes. Dibenzonaphthacenes were functionalized with linear phenylene-ethynylene oligomers, terminated with long alkyl chains to improve the solubility in organic solvents. We have shown by means of AFM, that such systems may form pi-stacked supramolecular aggregates under appropriate solvent conditions. These systems are models for molecular organic nanowires based on stacked PAHs.

Phenylene-ethynylene-macrocycles are shape-persistent, ring-like molecular building blocks for the formation of well defined two dimensional molecular networks on flat surfaces. Such self-assembled physisorbed adlayers can be used as crystalline, well arranged templates for the deposition of small guest molecules in their interior, e.g. fullerenes or gold nanoparticles, or may be further functionalized to achieve self sorting surfaces. The morphology is determined by the ring diameter, and its extra annular functionalization, e.g. by alkyl chains. Phenylene-ethynylene-macrocycles

²Department of Physics, Umeå University, S-901 87 Umeå, Sweden

were synthesized, and their monolayers on HOPG were investigated by STM.

7

Resistance Fluctuations in Graphene

<u>Viera Skakalova</u>¹ Alan B. Kaiser²

- ¹Max-Planck Institute for Solid State Research, Stuttgart
- ²MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington

We have measured resistance fluctuations that persist at temperatures up 50 K in graphene monolayer samples deposited on a Si/SiO2 substrate. The decrease of the amplitude of the fluctuations as temperature increases is qualitatively well described by inverse power laws similar to those seen for the temperature dependence of universal conductance fluctuations (UCFs) in disordered metals and explained by the Lee-Stone-Fukuyama theory. However, the much higher temperatures at which the fluctuations are seen suggests a significant difference, and the behaviour of the amplitude as the gate voltage varies appears to provide a challenge for current theory.

8

The reaction of lithium metal vapor with carbon nanostructures

Martin Kalbac¹ Ladislav Kavan¹ Lothar Dunsch²

- ¹ J. Heyrovsky Institute of Physical Chemistry, ASCR, Prague
- ²Leibniz Institute of Solid State and Materials Research, Group of Electrochemistry and Conducting Polymers, Helmholtzstr. 20, D 01069 Dresden, Germany.

Raman spectroscopy and in-situ Raman spectroelectrochemistry were applied to study the products of the reaction of lithium metal with carbon nanostructures: single walled carbon nanotubes (SWCNT) and fullerene peapods (C60@SWCNT). In general, a strong degree of doping was proved by the vanishing of the SWCNTâs radial breathing mode (RBM) and by the attenuation of the tangential (TG) modes intensity by two orders of magnitude. For C60@SWCNT the reaction with Li metal vapor caused a frequency downshift of the Ag(2) mode of the intratubular C60 by 27 cm-1 and changed the resonance condition of encapsulated fullerene. In contrast to potassium vapor doping, the strong downshift of the frequency of the TG band has not been found for Li-doping. The carbon nanostructures after reaction with Li metal vapor were exposed to humid air and examined by Raman spectroscopy. The residual Li doping even after water treatment has been confirmed for C60@SWCNT by in-situ Raman spectroelectrochemical measurements. The TG mode of the Li doped peapods does not upshift during the anodic doping, which points to the formation of a stable exohedral metallofullerene peapod.

Study on cellular adhesion of human osteoblasts on nano-structured diamond films

Marie Kalbacova¹ Antonin Broz¹ Oleg Babchenko² Alexander Kromka²

¹Institute of Inherited Metabolic Disorders,1st Faculty of Medicine, Charles University, Prague, Czech Republic

²Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 16253 Prague 6, Czech Republic

The need of new biocompatible materials with superior properties and flexibility in their surface termination and functionalization for medical applications is constantly increasing. Due to combination of intrinsic properties, chemically deposited diamond thin films are proposed as one of the most promising material in this field. They are chemically/mechanically/physically stable and their surface can be modified by variety of chemical or plasmatic techniques. We present the impact of diamond nano-morphology on of human osteoblasts. Different NCD nano-patterns, i.e. nanorods, cauliflower-like structures and irregular nanostructures, were prepared by plasma etching process applying various masking materials (Ni, Au and NCD powder). We observed that attachment of osteoblasts is guided by the NCD nanostructure as visualized by scanning electron microscopy and fluorescence microscopy. Few but large focal adhesions are formed on irregular nanostructures and many but very fine ones are formed on nanorods and cauliflower-like structures. We suggest that the cell adhesion is controlled by nano-structured films thereupon their usage in bio-medical applications could be considered.

10

Surface attenuated infrared absorption in hybrid materials of conducting polymers and carbon nanotubes

<u>Katalin Kamaras</u>¹ Bea Botka¹ Shoshana Ben-Valid² Aiping Zeng² Leah Reiss² Shlomo Yitzchaik²

We will present infrared spectra of carbon nanotubes wrapped by conducting polymers polyaniline, polycarbazole and melanin. These hybrid materials have been prepared by electrochemical polymerization and exhibit increased conductivity and enhanced electron transfer from the electrolyte to the electrode. Infrared spectra of similar systems show the so-called surface-attenuated infrared absorption (SAIRA) effect:¹ interaction of the polymers with the nanotube surface results in attenuation of in-plane vibrations while the out-of-plane vibrations are not affected. The magnitude of the attenuation depends on the strength of the nanotube-polymer interaction, i.e. the contact between the evanescent field of the nanotube surface

¹Research Institute for Solid State Physics and Optics, Budapest

²Institute of Chemistry and the Nanoscience and Nanotechnology Center, The Hebrew University of Jerusalem, Jerusalem

and the wrapping polymer. We compared the spectra of the hybrids and found the most outspoken effect in the case of polyaniline, in accordance with the results of UV-VIS and impedance spectroscopy.

¹ K. Setyowati, M.J. Piao, J. Chen, H. Liu: Appl. Phys. Lett. **92**, 043105 (2008).

Supported by the European Commission NEURONANO FP6 grant (NMP4-CT-2006-031847).

11

Characterization of Commercially Available Singlewall and Multiwall Carbon Nanotubes

Bahar Burcu Karahan¹ Siegmar Roth² Hye Jin Park²

Laser Ablation Singlewall Carbon Nanotubes from SINEUROP-Nanotech GmbH and various CVD grown multiwall carbon nanotubes (Ahwahnee Raw Multiwall Carbon Nanotubes, Arkema GraphistrenghtC100, BaytubesC150P, CTube and Nanocyl 7000 Multiwall Carbon Nanotubes) were characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and X-ray diffraction. These data were correlated with the electrical conductivity obtained by the four-lead technique on bucky paper or filter cake as well as with conductivity data from compressed powders. The conductivity of as-grown Laser Ablation Singlewall tubes varies between 710 and 170 S/cm, respectively, depending from what part of the reactor the samples are collected. The highest conductivity of multiwall tubes was found on Nanocyl®7000 and amounted to 85 S/cm. Implications for various industrial applications of carbon nanotubes will be discussed.

12

Dry manufacturing of SWCNT-based flexible, transparent conducting electrodes

 $\underline{Albert~G.~Nasibulin}^1~Antti~O.~Kaskela^1~David~Brown^2~Brad~Aitchison^2~Anton~S.~Anisimov^1~Esko~I.~Kauppinen^1$

¹Helsinki University of Technology, Nanomaterials group, Espoo, Finland

Thin films of single-walled carbon nanotubes (SWCNTs) are considered to be strong candidates for ITO replacement as flexible, transparent conducting electrodes (TCE) for e.g. flexible displays. We have developed a dry, direct method for the preparation of SWCNT films. SWCNTs were synthesised by an aerosol method ba-

¹Sabancı University, Istanbul-Turkey

²Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany

²Canatu Oy, Espoo, Finland

sed on the ferrocene vapour decomposition in CO atmosphere and collected directly from the gas phase via the filtering nitrocellulose filters. A thermo-compression method was adapted for transferring the SWCNT layers to PET films. We studied the effect of reactor the temperature as well as the residence time on the SWCNT characteristics and TCE film properties. When increasing the nanotube length and reducing the bundle diameters, we produced flexible TCEs having 50 ohms/sq sheet resistance at 80 % transmittance with 550 nm photons, after briefly treating the films with a drop of nitric acid. These TCE offer an alternative to replace ITO as TCE e.g. in flexible active matrix OLED displays.

13 Supramolecular assembly of SWNT and Ru(II)-bipyridine complex: Coupling of the organometallic redox functions with nanotube doping

<u>Ladislav Kavan</u>¹ Otakar Frank¹ Martin Kalbac¹ Lothar Dunsch¹ J. Heyrovsky Institute of Physical Chemistry, Prague

The amphiphilic Ru-bipyridine complex, NaRu(4-carboxylic acid-4'-carboxylate-2, 2'bipyridine) (4,4'-dinonyl-2,2'bipyridine) (NCS)2 can be used as a surfactant for solubilization of single walled carbon nanotubes (SWNTs) in acetonitrile-t-butanol mixture. Electrochemical n-/p-doping of a supramolecular assembly was studied for the first time by in-situ Raman spectroelectrochemistry. Whereas the Raman lines assigned to the nanotube (RBM and G-bands) attenuate their intensities upon both n- and p-doping, the Raman lines, assigned to the bipyridine ring vibrations, selectively attenuate for the p-doping only. The explanation is based on the erasing of resonance enhancement in a doped supramolecular assembly. Whereas the charge transfer localized on the Van Hove singularities is generally amphoteric, the charge transfer localized on the Ru(II)-bipyridine is not. The p-doping of the Z-907Na/SWNT assembly at potentials positive to ca. 0.7 V vs. Ag-pseudoreference causes faradaic oxidation of Ru(II) to Ru(III), but there is no mirror effect (reduction of Ru(II)) upon n-doping at the used potentials, by -1.6 V vs. Ag-pseudoreference.

14

The morphology of Silicon nanowire samples: A Raman study

S. Khachadorian¹ H. Scheel¹ M. Cantoro² A. Colli² A. C. Ferrari² C. Thomsen¹ Institute für Festkörperphysik, Technische Universitüt Berlin, Berlin, Germany ²Department of Engineering, University of Cambridge, Cambridge CB3 OFA, UK

Raman spectra of silicon nanowires (SiNWs) are studied as a function of laser excitation power and temperature. With increasing temperature and laser excitation power a typical red-shift of the SiNWs first order optical mode is obtained. At ambient conditions, the power dependent Raman shift shows a saturated behavior beyond a critical power. Similar measurements, under vacuum, rule out effects due

to thermal convection as a reason for the observed Raman shift saturation. The irreversibility of the power-dependent Raman shifts and the reversibility of temperature dependent shift suggest that the observed saturation of the frequency shift can be explained with a change in sample morphology. Finally, a simulation of the SiNW Raman spectra reveals that the temperature behavior can be explained by a four phonon anharmonic process.

15

Reduction-Controlled Viologen in Bisolvent as an Environmentally Stable n-Type Dopant for Carbon Nanotubes

Soo Min Kim¹ Jin Ho Jang¹ Ki Kang Kim¹ Hyeon Ki Park¹ Jung Jun Bae¹ Gunn Kim¹ Jae-Young Choi² Young Hee Lee¹

 $^1\mathrm{Sungkyunkwan}$ Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon

²Display Device and Processing Laboratory, Samsung Advanced Institute of Technology, Suwon

Various viologens have been used to control the doping of single-walled carbon nanotubes (SWCNTs) via direct redox reactions. A new method of extracting neutral viologen (V0) was introduced using a biphase of toluene and viologen-dissolved water. A reductant of sodium borohydride transferred positively charged viologen (V2+) into V0, where the reduced V0 was separated into toluene with high separation yield. This separated V0 solution was dropped on carbon nanotube transistors to investigate the doping effect of CNTs. With a viologen concentration of 3 mM, all the p-type CNT transistors were converted to n-type with improved on/off ratios. This was achieved by donating electrons spontaneously to CNTs from neutral V0, leaving energetically stable V2+ on the nanotube surface again. The doped CNTs were stable in water by the presence of hydrophobic V0 at the outermost CNT transistors, which may act as a protecting layer to prevent further oxidation from water.

16

Electromechanical Self-sustained Oscillations of Nanosized Field Emitters

V. I. Kleshch¹ A. N. Obraztsov² Al. A. Zakhidov² E. D. Obraztsova¹

Carbon nanotubes (CNTs) are known to have outstanding field emission (FE) properties suitable for production of cathodes for vacuum electronic devices. Comparing to the other electron sources CNT have peculiarities of FE which are crucial for applications but their origination remains unclear till now (anomalous FE current noise, "blinking"of the electron density pattern, unexpected trajectories of

¹A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia

²Department of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

electrons). At the same time there are observations of the "strange"mechanical oscillations of single CNT driven by a DC voltage. Here we present results of experimental and theoretical studies of FE from nanomaterials. In case if the cathodes are flexible, we observed the mechanical and FE current KHz oscillations driven by a DC voltage. To explain the oscillations we propose a model of the emitter as a mechanical oscillator in the electric field. Computer simulation shows an ability of initiation of the self-sustained oscillation at certain parameters. For a single nanoemitter our model predicts the oscillations with GHz frequencies. This phenomenon opens a possibility for DC voltage conversion into GHz electromagnetic oscillations by using flexible nano-emitters.

17

Junctions of left- and right-handed chiral carbon nanotubes - nanobamboo

<u>János Koltai</u>¹ Viktor Zólyomi² Ádám Rusznyák¹ Jenő Kürti¹ István László³

The outer tube of a peapod serves as a long straight reaction room for forming of the inner tube by coelascing of the fullerene molecules. For a given outer tube only a few types of inner tubes are allowed by the van der Waals distance. However it is possible that inner tubes with different chiralities - or the same chirality but left- and right-handedness - can start to grow in different places at the same time. A straight junction occurs at the connection of these two tubes. The geometry of different kinds of junctions containing pentagon and heptagon defects was optimized by density functional theory. The effect of the localized states on the electronic band structure was investigated.

18

Electronic structures of impurity doped carbon nanotubes

Takashi Koretsune¹ Susumu Saito¹

For the electronic transport properties of semiconductors, impurities play a significant role. In carbon nanotubes, however, the effect of the impurities has not been well understood. In this paper, to clarify the properties of the impurities in carbon nanotubes, we study the electronic structures of boron or nitrogen doped carbon nanotubes using the density functional theory. We first obtain the optimized structures and discuss the stabilities of substitutional boron or nitrogen impurities. Then, we calculate the doping rate dependence of the gap of doped carbon nanotubes. From the extrapolation of the gap to the low-density limit, we estimate the depth of the impurity level. The difference between boron-doping and nitrogen-doping as well as the tube-diameter dependences of impurity states are discussed.

¹Eötvös University Budapest, Budapest

²Department of Physics, Lancaster University, Lancaster

³Institute of Physics, Budapest University of Technology and Economics, Budapest

¹Department of Physics, Tokyo Institute of Technology, Tokyo

Raman signatures of WS2 nanomaterials

<u>Matthias Krause</u>¹ Marko Viršek² Maja Remškar² Nesim Salacan³ Niles Fleischer³ Gintautas Abrasonis¹ Andreas Kolitsch¹ Wolfhard Möller¹

 $^{1} \rm Institute$ of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Dresden

Fullerene-like WS2 nanoparticles and WS2 nanotubes are studied by wavelength dependent Raman spectroscopy. The response from the nanomaterials is compared to that of 2H-WS2 crystals and microcrystalline 2H-WS2 powder. The Raman signatures point to a hexagonal 2H stacking of the WS2 layers in all nanostructures. While the wave numbers of 1st and 2nd order Raman scattering show only little dependence, the line widths and the intensity ratios exhibit a systematic evolution with respect to the specific WS2 nanostructure. The sulfur-sulfur stretching mode range is particularly sensitive to the different stages of disorder and is suitable for the diagnostic classification of the WS2 nanostructures. Raman mapping across the nanoparticles is used to distinguish between disorder and surface effects on the vibrational spectra. All the experiments were performed at low laser power, since the transformation into WO3 is induced already at moderate illumination due to the limited photo- and thermal stability of the materials.

This work is supported by the European Union sixth Framework Program (FORE-MOST project under contract NMP3-CT-2005-515840).

20

Core-Shell Pbl2@WS2 Inorganic Nanotubes from Capillary Wetting

<u>Ronen Kreizman</u>¹ Sung You Hong² Jeremy Sloan³ Ronit Popovitz-Biro¹ Anna Albu-Yaron¹ Gerard Tobias² Belen Ballesteros² Benjamin G. Davis² Malcolm L. H. Green² Reshef Tenne¹

¹Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel

²Department of Chemistry, University of Oxford, Oxford, UK

³Department of Engineering and Materials, Queen Mary University of London, London, UK

One of the defining structural features of nanotubular structures is their long inner hollow cavity. Capillarity has been shown to drive the wetting and filling of carbon nanotubes with liquid and molten-phase inorganic salts. Encapsulation in the narrow void of carbon nanotubes was shown to result in a profound change of the structural chemistry of the included material relative to its bulk form. Here we demonstrate a new synthetic strategy allowing formation of core-shell nanotubular structures using multi-walled WS2 nanotubes as host templates. The relatively lar-

²Jozef Stefan Institute, Ljubljana, Slovenia

³NanoMaterials, Ltd., Nes Ziona, Israel

ge diameter of the WS2 nanotube (with inner and outer diameters of ca. 10 and 20 nm, respectively), allows a conformal folding of the guest PbI2 layers on thir interior wall, leading thus to defect-free core-shell nanotubular structures, not previously observed in carbon nanotubes[1]. Recently, new core-shell inorganic nanotubes have been prepared from compounds other than PbI2.

1. Kreizman R. et. Al., Ang. Chem. Int. Ed., In press.

21

Role of polymers in CVD growth of nanocrystalline diamond films on foreign substrates

<u>Alexander Kromka</u>¹ Oleg Babchenko¹ Halyna Kozak¹ Bohuslav Rezek¹ Milan Vanecek¹

¹Institute of Physics, Academy of Science of the Czech Republic, Prague

A growth of nanocrystalline diamond thin films becomes nowadays a routine in labs and companies over world. However, the growth of (ultra) thin films (less than 100nm) is still a technological challenge because of low nucleation efficiency on non-diamond substrates. In this work, we present an implementation of polymer based composite as the diamond nucleation layer suitable for arbitrary substrates (silicon, glass, polymer). We show that a polymer-based composite layer consisting of detonation diamond nanoparticles enhances the diamond nucleation and enables a formation of continuous nanocrystalline diamond films. This type of nucleation is well suitable for large areas and flat substrates. Using a primary polymer used as a passivation layer during standard ultrasonic seeding enables achieving good diamond growth on structured substrates. A proper combination of polymer composites with a lithographic processing is an effective way to directly growth microscopic diamond patterns on arbitrary substrates. We demonstrate electronic devices (field-effect transistors) as well as biological templates grown in this way.

22

Electromagnetic shielding properties of MWNT/PMMA composites in Ka-band

<u>Vladimir Kuznetsov</u>¹ Ilya Mazov¹ Sergey Moseenkov¹ Anna Usoltseva¹ Anatoly Romanenko² Timofey Buryakov² Polina Kuzhir³ Sergey Maksimenko³

In this work we investigated electrophysical properties of multiwall carbon nanotubes/polymethyl methacrylate (MWNT/PMMA) composites, which were prepared via coagulation technique using ultrasonic dispersion of MWNT in PMMA/NMP-DMF solution. MWNT content was varied in range 0.25-10 wt.percent. MWNT distribution in polymer matrix was controlled using optical, scanning and transmis-

¹Institute of Catalysis; Novosibirsk State University, Novosibirsk, Russia

² Nikolaev Institute of Inorganic Chemistry; Novosibirsk State University, Novosibirsk, Russia

³Institute of Nuclear Problems of Belarus State University, Minsk, Belarus

sion electron microscopy. MWNT/PMMA composites, starting from small MWNT content, display high shielding efficiency (SE). Maximal attenuation was observed for composites with high MWNT content, with the value near 22-30 dB, corresponding to approximately 0.3-0.6 percent of incident radiation transfer through composite film with thickness 0.5-0.6 mm. Strong increase in SE occurs for MWNT content higher than 1 wt.percent, correlating with the percolation threshold of electrical conductivity. This phenomenon may be related with formation of long-range connectivity of MWNT network in PMMA matrix. Thus produced materials show high SE in millimeter wavelengths and may have high potential for use as components of various electronic devices due to their light weight, scalable technology and tailored properties.

23

Theoretical study of doped fullerene-cubane cocrystals

Jenő Kürti¹ János Koltai¹ Viktor Zólyomi² Sándor Pekker³

We present a first principles study of the electronic band structure of doped fullerenecubane ($C_{60}C_8H_8$) cocrystals using density functional theory at the local density approximation level. Three high symmetry orientations of the fullerene molecules were considered. The calculated electronic bands of the fullerene-cubane cocrystal are narrower than those of the pristine fullerene, indicating a higher superconducting critical temperature in the doped cocrystal. However, the charge transfer turned out to be incomplete [1] thus acting in the opposite way. Different oxidation state of the fullerene molecules can be achieved by doping with various alkali (K, Na) and alkali earth (Ba, Ca) atoms.

[1] V.Zólyomi, J.Koltai, J.Kürti and S.Pekker, Phys. Rev. B78, 115405 (2008)

24

Raman investigation of of colloidal II-VI semiconductor heterostructures

Holger Lange¹ Ulrike Woggon² Christian Thomsen¹

Colloidal nanocrystals (NCs) of II-IV semiconductor materials posses unique optical and electronic properties that offer a huge potential for applications. The NCs can be epitaxially covered with a graded shell of another semiconductor or combined into heterostructures like tetrapods. The lattice mismatch between the components introduces strain into the lattice of the initial NC core. This has a significant influences on the electronic and optical properties. We present Raman measurements of

¹Department of Biological Physics, Eötvös University Budapest, Budapest

²Department of Physics, Lancaster University, Lancaster

³Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Budapest

¹Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Berlin

²Institut fuer Optik und atomare Physik, Technische Universitaet Berlin

different sized nanorods with shells and tetrapods consisting of quantum dot cores as seeds and nanorod arms. Both in different combinations of CdSe, CdTe and ZnS. The influence of the additional component on the core NC is discussed, especially strain, the vibrational properties and couplings between phonons and electronic excitations.

25

Electronic structure of nanotube networks

Istvan Laszlo¹ Ibolya Zsoldos¹

¹Institute of Physics, Budapest University of Technology and Economics, Budapest

The electronic properties of carbon nanotubes are usually obtained with the help of the zone folding method, which is based on the graphene electronic structure. During the rolling up of the graphene there are changes, however, in the angles and distances between the carbon atoms of the hexagonal network. Thus in more sophisticated calculations curvature effects and the corresponding hybridizations must be taken into account. The case is more complicated if we study nanotube networks where the rolling up method can not be used. In this case the Pi-Orbital-Axys-Vector analysis (POAV) gives some insights into the degree of hybridization. In this work we present a simple one orbital one site Hamiltonian for the study of the electronic structure of distorted nanotubes and nanotube networks. The hybridization and the effect of the non-hexagonal polygons is included in the parametrization of the method. We shall also discuss the applicability of the POAV analysis.

26

ELECTRONIC STRUCTURE OF THE FLUORINATED DOUBLE â- WALL CARBON NANOTUBES PRODUCED USING DIFFERENT FLUORINATION METHODS

Yu. V. Lavskaya¹ L. G. Bulusheva¹ A. V. Okotrub¹ A. Felten² E. Flahaut³

¹Nikolaev Institute of Inorganic Chemistry SB RAS, av.Ak.Lavrentieva 3, Novosibirsk 630090, Russia

²Laboratoire Interdisciplinaire de Spwctroscopie Electronique, Facultes Universitaires Notre Dame de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium

³Centre Interuni Versitaire de Recherche et dâ
Ingenierie des Materiaux, Uni Versite Paul-Sabatier, 31062
 Toulouse cedex 9, France

Double-wall carbon nanotubes (DWNTs) have been synthesized by chemical vapor deposition method. Fluorination of DWNTs was performed using three different techniques: F2 treatment at high temperature, CF4 plasma treatment, and by gaseous BrF3 at room temperature. Raman spectra indicated that the inner shells remained intact in all fluorinated DWNTs. Fluorine content of the samples was determined from x-ray photoelectron spectroscopy. Comparison of the x-ray absorption near C K-edge spectra (XANES) of the fluorinated DWNTs showed the nanotubes are different in the density of unoccupied electronic states. The F

K-edge XANES spectra of the fluorinated DWNTs showed dependence of fluorine atoms positions on nanotube surface on fluorination conditions. Annealing of the fluorinated DWNT led to removing of the fluorination atoms from and this process depends on C-F bond strength.

27

Metal-induced doping and edge effects in graphene devices probed by scanning photocurrent microscopy

 $\underline{\rm Eduardo~J.~H.~Lee}^1$ Kannan Balasubramanian 1 R. Thomas Weitz 1 Marko Burghard 1 Klaus Kern 1

¹Max Planck Institute for Solid State Research, Stuttgart

Graphene has been a topic of intense research in recent years both from fundamental and technological perspectives. Its linear energy dispersion around the Fermi level leads graphene quasiparticles to mimic relativistic Dirac fermions, as demonstrated experimentally both by electrical and optical studies. Furthermore, quasiparticles in graphene possess extremely high carrier mobilities, rendering graphene devices attractive for future applications in electronics. Toward this end, it is essential to first understand the operating mechanisms of such devices, which involve many aspects that have still not been explored. In this work, we evaluate by scanning photocurrent microscopy (SPCM) the effects of the electrical contacts and the flake edges on graphene devices. The observed photocurrent responses revealed the presence of electrostatic potential steps at the metal-graphene interfaces that act as transport barriers at the metal contacts. Moreover, it is demonstrated that the devices do not switch in a homogeneous way as they are brought from the p- to the n-type regime by electrostatic gating. Instead, a transversal p-n-p profile is observed around the Dirac point.

28

Conductivity of CNT filled polymer melts under sinusoidal shear

Dirk Lellinger¹ Tetyana Skipa¹ Ingo Alig¹

The application of carbon nanotubes (CNT) for tailoring polymer composites has drawn great attention over the last few years. Due to their large aspect ratio and specific surface, they are promising filler materials for mechanical reinforcement of polymers and, because of their outstanding electrical conductivity, also for the enhancement of the electrical conductivity of those materials. However, the electrical properties of such composites are very sensitive to the shear history the material has undergone during processing. In order to understand the influence of shear deformations on the conductivity on CNT filled polymer melts, we built up a rheometer setup with rheometer plates acting as electrodes, concurrently. By advanced electronic control of the rheometer we are able to overlay a constant shear and

¹Deutsches Kunststoff-Institut, Darmstadt

a sinusoidal shear rate. Both the resulting torque and the electrical conductivity can be measured perfectly synchronous with high acquisition rate. We will present the conductivity behaviour of multiwall CNT filled polymer melts under sinusoidal shear deformations of different strain amplitudes.

29

Temperature modification of oxidized multiwall carbon nanotubes (ox-MWCNTs) studied by the electron spectroscopy methods

Beata Lesiak¹ Josef Zemek² Peter Jiricek² Leszek Stobinski³

¹Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland

²Institute of Physics, Academy of Sciences of the Czech Republic, 162-53 Prague, Cukrovarnicka 10, Czech Republic

³Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland; Warsaw University of Technology, 02-507 Warsaw, WoAoska 141, Poland

Carbon nanotubes (CNTs) can be applied as promissing catalyst support due to excellent electrical conductivity, high surface area and good access of reactants to metallic catalyst deposited on CNTs. In the present work the temperature modification of ox-MWCNTs in the range from RT to 150 C was investigated. Their surface was studied by electron spectroscopy methods, i.e. XPS, XAES, EPES and EELS. The TEM showed irregular structures of bundled and non-uniform diameter ox-MWCNTs. Thermal desorption showed varying contributions of H2, H2O, CO and CO2 depending on the temperature. The H2O could diffuse from CNTs channels. The CO2 could originate from COOH groups, whereas the CO from OH and C=O groups. The content of oxygen at the ox-MWCNT surface decreased from 12.4 at. % to 9.8 at. %. The C 1s spectra showed increasing number of C sp2 bonds confirmed by the width of C KLL transitions (from 63 % to 74 %). The O 1s spectra indicated increasing content of aromatic C=O groups accompanied by decreasing content of aliphatic C=O, aliphatic and aromatic CâOH and COOH groups. Structural changes were observed in EELS spectra from increase and shift of the pi-plasmon.

30

Combined STM/STS, TEM/EELS investigation of CNx-SWNTs

<u>Hong Lin</u>¹ Jerome Lagoute² Raul Arenal¹ Odile Stephan³ Shaima Enouz-Vedrenne¹ Sylvie Rousset² Annick Loiseau¹

¹ONERA, BP 72, LEM, UMR 104-CNRS-ONERA, Chatillon

We have studied the impact of nitrogen atoms on the electronic structure of C-

²MPQ, Universite Paris 7, France

³LPS, UMR 8502, Universite Paris-Sud, France

SWNTs by combining STM/STS and TEM/EELS. To this aim, CNx-SWNTs have been synthesized by vaporizing with a continuous laser a C:Ni/Y target under a nitrogen atmosphere. EELS analysis indicates a nitrogen concentration lower than 1 at.per cent and the existence of two different local environments of N atoms, the first one being a graphitic configuration where an N atom is simply substituted to a C atom, and the second one a more complex configuration such as the pyridinic like configuration. Using STM and STS, specific defects have been assigned to the presence of N atoms as they are not observed in pure C-SWNTs. They give rise, in images, to protusions extended over 3-5 nm and having a large periodicity. They also provoke a change in the helicity of the tube. At the apex of the defect, STS reveals the presence of two localized states within the band gap, one donor and one acceptor, shifted by about 0.3 eV from the Fermi level. These signatures indicate a complex defect, which could correspond to the second kind of environment identified in EELS.

31 Thermal decomposition of C60H18

Serhiy Luzan¹ A. V. Talyzin¹

Fullerene C60 is known to react with hydrogen gas with formation of various hydrofullerenes. However, reverse reaction of highly hydrogenated fullerene, which occurs at temperatures over 800K, results not only in recovery of pristine C60 but also in partial collapse of fullerene molecules. Starting material, C60H18, was produced by direct reaction of solid C60 with hydrogen gas at elevated conditions. Dehydrogenation products obtained in a broad range of temperatures and using various periods of heat treatment were characterized by XRD, IR spectroscopy, Raman spectroscopy and mass spectrometry. Hydrofullerene C60H18 exhibits fcc structure with increased cell parameter a=1.455 nm compared to pristine C60 (1.417 nm). Breakup of C-H bonds was observed for temperatures of heat treatment above 620K using IR and Raman spectroscopy. However, the cell parameter of fcc structure remained the same as for pristine C60H18 and even become higher when temperature of heat treatment was increased. Seemingly paradoxical increase of cell parameter correlates with partial collapse of fullerene molecules and formation of nanocarbon phase. It is proposed to use thermal decomposition of hydrofullerenes for synthesis of graphene-related materials and graphite nanoparticles.

¹Department of Physics, Umea University, Umea

Resonance Raman Study of Phosphorous Doped Single-Wall Carbon Nanotubes

 $\underline{\rm Indhira~O~Maciel}^1$ J. Campos-Delgado 2 E. Cruz-Silva 3 M. A. Pimenta 1 M. Terrones 2 H. Terrones 2 A. Jorio 1

¹Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30123-970, Brazil.

²Advanced Materials Department, IPICYT, San Luis Potosí, SLP, Mexico.

Doping single-wall and multi-wall carbon nanotubes changes their physical and chemical properties. The most studied substitutional doped nanotubes are the ones containing boron and nitrogen, the nearest neighbors of carbon in the periodic table that can provide holes and electrons to the tube, respectivelly. Phosphorous is another electron donor to nanotubes, but fundamentally different from nitrogen because it belongs to a different row in the periodic table. In this work, substitutional phosphorous doping in single-wall carbon nanotubes is investigated by resonance Raman spectroscopy. We study the doping-induced changes in the radial brething mode (RBM), disorder-induced mode (D mand), graphitic G and G' bands, drawing a comparative study with observations in boron and nitrogen doped tubes. Changes in the diameter distribution, resonance Raman cross-section, thermal transport, electron and phonon structure will be discussed.

33

Determination of the tight-binding parameters of bilayer graphene by resonance Raman scattering

<u>D. L. Mafra</u>¹ L. M. Malard¹ J. Nilsson² S. K. Doorn³ A. H. Castro Neto⁴ M. A. Pimenta¹

¹Universidade Federal de Minas Gerais, P.O. Box 702, Belo Horizonte, Brazil

³Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

 $^4\mathrm{Department}$ of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

In this work, the electronic and vibrational structure of bilayer graphene are investigated from a resonant Raman study of the 2D band using different laser excitation energies in the visible and near infrared range. The values of the tight-binding parameters of the Slonczewski-Weiss-McClure (SWM) model for bilayer graphene are obtained from the analysis of the dispersive behavior of the Raman features and compared with recent results from infrared measurements. Our results evidence a significant asymmetry between the valence and conduction bands of bilayer gra-

³Oak Ridge National Laboratory, P.O. Box 2008 Oak Ridge, TN, 37830-6367

 $^{^2}$ Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

phene. The splitting of the two iTO phonon branches in bilayer graphene is also obtained from the experimental data and we show that the phonon renormalization is stronger for the totally symmetric phonon branch.

34

Versatile growth of carbon nanotubes at low temperature by the equimolar C_2H_2 - CO_2 reaction

 $\underline{\rm Arnaud~Magrez^1}$ Jin Won $\rm Seo^2~Rita~Smajda^3~Barbara~Korbely^3~Juan~Carlos~Andresen^1~Stephane~Casimirius^1~Laszlo~Forro^1$

Chemical vapor deposition is considered to be the most viable process for in situ production of nanotubes integrated into a device. Regardless of the carbon source, synthesis is nowadays limited to classical decomposition reactions, for example, $C_xH_y \to xC + y/2H_2$ and $2CO \to C + CO_2$.

Herein, we will report a newly discovered equimolar reaction between acetylene and CO_2 to produce CNTs. The overall reaction can be described by the following equations: $\mathrm{C}_2\mathrm{H}_2 + \mathrm{CO}_2 \to 2\mathrm{C} + \mathrm{H}_2\mathrm{O} + \mathrm{CO}$ or $\mathrm{C}_2\mathrm{H}_2 + \mathrm{CO}_2 \to \mathrm{C} + 2\mathrm{CO} + \mathrm{H}_2$. An extensive characterization of the chemical mechanism will be presented. Without demanding pre-activation process of the catalyst , the equimolar $\mathrm{C}_2\mathrm{H}_2\text{-}\mathrm{CO}_2$ reaction allows CNTs growth at temperatures well below 500 °C, on numerous functional materials like oxides, nitrides, carbides, borides or metals. As well, macroscopic objects built from aligned CNTs can be produced. It is an attractive synthesis pathway for the direct integration of CNTs into devices which do not support a high temperature processing of synthesis CNTs.

[1] A.Magrez, J.W. Seo, et al, Angew. Chem. Int. Ed. 46 (2007) 4.

35

Experimental realization of metastable ferromagnetic phases in dilutely hydrogenated fullerenes

<u>T. L. Makarova</u>¹ I. B. Zakharova² O. E. Kvyatkovskii³ S. G. Buga⁴ A. P. Volkov⁴ A. L. Shelankov¹

We are presenting the recipes and cooking tips for preparing films of dilutely hydrogenated fullerenes $H:C_{60}$. Lowering the symmetry to the C_h group in the case of $C_{60}H$ and to C_v for $C_{60}H_2$ makes all the symmetric vibrations Raman active, and the number of modes appears in the spectra. DFT calculations of the Raman

¹Ecole Polytechnique Federale de Lausanne, Switzerland

²Catholic University of Leuven, Belgium

³University of Szeged, Hungary

¹Physics, Umea University, Umea

²State Polytechnical University, St Petersburg, Russia

³Ioffe Physico-Technical Institute, St Petersburg, Russia

⁴Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Russia

spectra at the B3LYP/3-21G level are compared with the experimental data. Under the laser treatment these exotic films form a rich variety of dimeric and polymeric structures, quite in contrast to usual hydrogenated fullerenes which do not polymerize at all, and to pristine CC_{60} which forms dimers and polymers bonded by two interfullerene \ddot{I} -bonds through the [2+2] addition. Dilutely hydrogenated fullerenes polymerize differently, forming both double bonded structures and single bonded ones. We have shown that double bonded polymerization of C_{60} :H leads to a metastable ferromagnetism which disappears due to the structural relaxation and formation of diamagnetic single bonded dimers.

36

Molecule Nanotube Hybrids

<u>Christoph W. Marquardt</u>¹ Simone Dehm¹ Frank Hennrich¹ Alfred Blaszczyk¹ Sergio Grunder² Marcel Mayor² Ralph Krupke¹

¹Institut für Nanotechnologie, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany

²Department of Chemistry, University Basel, CH-4056 Basel, Switzerland

Single functional molecules are the basic elements of molecular electronics. A reliable contact between molecules and metal electrodes is still a challenge for fabricating single-molecule devices. Metallic single-walled carbon nanotubes (mSWCNT) have promising properties for their application as metallic electrode due to their low dimensionality, ballistic transport behaviour and stability against electromigration [1].

Our approach to produce mSWCNT-molecule-mSWCNT devices is as follows: First we assemble a low-resistance single mSWCNT device by dielectrophoretic assembling and subsequent conditioning [2]. Then we produce a gap of several nanometers size in the mSWNT by electrical breakdown, finally we implant custom tailored molecules. Our molecules possess a fluorescent part that shows luminescence at a specific wavelength. During electronic transport measurements on our molecule-nanotube hybrids we simultaneously measure the emitted light which gives us a molecule specific fingerprint.

- [1] X. Guo et al., Science 311 (2006) 356.
- [2] C.W. Marquardt, Nano Lett. 9 (2008) 2767.

¹³C NMR investigation of cubane-fullerene C₈H₈·C₆₀ cocrystals

<u>Péter Matus</u>¹ Mónika Bokor¹ Attila Domján² György Kriza¹ Éva Kováts¹ Sándor Pekker¹ Gyula Bényei³ István Jalsovszky³

¹Research Institute for Solid State Physics and Optics, POB 49, H-1525 Budapest, Hungary

²Institute of Structural Chemistry, Chemical Research Center, POB 17, H-1525 Budapest, Hungary

³Department of Organic Chemistry, Eötvös Loránd University, POB 32, H-1518 Budapest, Hungary

The rotor-stator molecular cocrystal $C_8H_8 \cdot C_{60}$ (cubane–fullerene) has been investigated by 13 C nuclear magnetic resonance (NMR). The room-temperature spectrum obtained using $^1H^{-13}$ C cross-polarization technique exhibits two lines with chemical shifts identical with the shifts of the original molecular constituents demonstrating the lack of strong electronic interaction between C_{60} and C_8H_8 .

The temperature dependence of the spin-lattice relaxation time of the fullerene component confirms the existence of a first-order orientational ordering transition around 145 K; above the transition temperature there is only one relaxation time whereas in the transition region two relaxation times with varying spectral weights can be observed. The spectrum remains narrow down to 90 K indicating that similarly to pristine C_{60} , the molecular reorientational motion is still fast in the ordered phase on the NMR time scale.

38

Vibrational properties of graphene nanoribbons by first-principles calculations

 $\underline{\text{Roland Gillen}}^1$ Marcel Mohr 1 Janina Maultzsch 1 Christian Thomsen 1 Technische Universität Berlin, Berlin

We investigated the vibrational properties of graphene nanoribbons by means of first-principles calculations on the basis of density functional theory. We find that the phonon modes of graphene nanoribbons with armchair and zigzag type edges can be interpreted as fundamental oscillations and their overtones. These show a characteristic dependence on the nanoribbon width. Furthermore, we demonstrate that a mapping of the calculated Γ -point phonon frequencies of nanoribbons onto the phonon dispersion of graphene corresponds to an "unfolding" of nanoribbons' Brillouin zone onto that of graphene. We consider the influence of spin states with respect to the phonon spectra of zigzag nanoribbons and provide comparisons of our results with past studies.

Relaxation and decoherence of spins in 15 N and 31 P in C₆₀

Michael Mehring¹ Jens Mende² Boris Naydenov³ Wolfgang Harneit⁴

- 12. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
- ²Deutsches Zentrum für Luft- und Raumfahrt (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
- 3 3. Physikalisches Institut, University Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
- ⁴Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

The spin states of 15 N and 31 P atoms encapsulated in C_{60} are quite interesting per se, as well as in the context of quantum information processing. Their application as quantum bits (qubits) has already been extensively investigated in the literature. In this contribution we present new results concerning the relaxation and decoherence phenomena observed in these systems. We address in particular the creation of entangled states in selective sublevel systems and their decoherence. Moreover we present methods for lengthening the intrinsic coherence time using specific multiple pulse electron spin echoes, which are also applicable to other spin qubits. Several scenarios will be compared.

40

Lattice dynamic of h-BN: from a 2D-layer to a 3D solid

Karl H. Michel¹ B. Verberck¹

¹Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

We present a theoretical study of the lattice dynamics of hexagonal boron nitride (h-BN), considering the evolution of the phonon spectrum from a single layer to a multilayer- and 3D-solid. Particular emphasis is put on the interplay between valence and Coulomb forces between ions. Intra-plane valence forces are taken from a fifth-neighbor force-constant model derived from full in-plane phonon dispersions of graphite [Mohr et al. Phys. Rev. B 76, 035439 (2007)]. Inter-plane interactions are described partially by van de Waals forces. Coulomb interactions for intra-plane and inter-plane potentials are treated by the Ewald method. The phonon dispersion relations are derived throughout the Brillouin zones. The theoretical results are compared with experiments on elastic constants and optical phonons. Piezoelectric effects are discussed.

Symmetry based analysis of the electron-phonon interaction in graphene

<u>Ivanka Milosevic</u>¹ Nenad Kepcija¹ Edib Dobardzic¹ Marcel Mohr² Janina Maultzsch² Christian Thomsen² Milan Damnjanovic¹

¹University of Belgrade, Belgrade

Symmetry based analysis of the electron-phonon interaction in graphene is performed. Extraordinary physical properties are shown to be consequence of symmetry. The results are confirmed within full and TB DFT calculations and FC model.

Graphene has a diperiodic symmetry group DG80= \mathbf{TD}_{6h} . It is a single orbit system generated by DG3= \mathbf{TC}_2 , with the stabilizer group isomorphic to \mathbf{D}_{3h} . Despite the large stabilizer this is a symmetry fixing set. Hence, its dynamical representation shows low diversity of the phonon modes symmetry.

It is these two facts which provide the extraordinary effect: There are non symmetric modes which are not vibronically coupled and thus might be responsible for stability of the honeycomb lattice. Symmetry also predicts vanishing of the electron-phonon interaction for quite a number of the normal displacements. Thus, lattice dynamics along these degrees of freedom is governed by the ion repulsion which leads to the anharmonic terms, being linear in absolute elongation. In particular, this effect is attributed to the K and Γ points of the BZ, giving insight into origin of the Kohn anomaly.

42

Preparation and characterisation of SU8-carbon nanotubes composites

M. Mionic¹ L. Brocher¹ S. Jiguet² A. Akrap¹ M. Judelewicz² L. Forro¹ A. Magrez¹ Ecole Polytechnique Fédérale de Lausanne, Switzerland

²Gersteltech SARL, 1009 Pully Switzerland

SU8 is a highly chemical resistant near UV photoresist. This negative epoxy polymer is inexpensive and can be easily processed in high aspect ratio structures with standard photolithography. Therefore, it has a very broad range of applications, especially in the domain of micro and nanotechnologies (nanofluidic, nanoelectromechanical systems ...). However, SU8 is an insulating and brittle polymer. Therefore, we have prepared SU8/CNTs composite aiming at reinforcing the polymer and at enhancing its electrical and thermal properties.

At first, we have optimized the mixing conditions (process, solventâ) and studied the influence of the CNTs functionalisation in order to enhance the CNTs dispersion within the polymeric matrix as well as to improve the interaction between CNTs and SU8. So far, homogeneous SU8/CNTs composites have been obtained and layers with tunable transparency and thickness have been prepared. Results of the mechanical, electrical and thermal properties characterization of the composites will be presented.

²Technische Universitat Berlin, Berlin

Authors want to acknowledge R. Gaal for fruitful discussion.

43

Resonance Raman scattering of metallic and semiconducting single-wall carbon nanotubes

Yasumitsu Miyata¹ Kazuhiro Yanagi² Yutaka Maniwa³ Hiromichi Kataura²

Resonance Raman spectroscopy is a powerful tool to study the phonon and the electronic states of single-wall carbon nanotubes (SWCNTs). In previous studies, however, the detailed analysis has been limited by the mixed Raman signals from the co-existing metallic and semiconducting SWCNTs in as-grown samples. Here, we present the results of the resonance Raman scattering performed on high purity metallic and semiconducting SWCNTs. The metallic and the semiconducting SWCNTs were prepared using a density gradient ultracentrifugation method. Interestingly, for the intermediate frequency modes (IFMs) between 600 and 1100 cm-1, sharp peaks with steplike dispersive resonance behavior were observed only for semiconducting SWCNTs. In addition, it was found that the metallic SWCNTs showed largely different frequency of the D-mode and some other high-energy modes from those of semiconducting SWCNTs. We will discuss possible physical backgrounds of the difference observed in Raman response between the metallic and the semiconducting SWCNTs.

44

The radial breathing mode in CdSe nanorods

<u>Marcel Mohr</u>¹ Holger Lange¹ Mikhail Artemyev² Ulrike Woggon³ Christian Thomsen¹

We performed *ab initio* calculations of the vibrational properties of bare CdSe nanowires and CdSe/ZnS core/shell nanowires and found a radial breathing mode (RBM). We calculated the modes' frequency for various diameters and sets of bare CdSe nanowires and CdSe/ZnS core/shell nanowires to determine the diameter dependence of the modes' frequency. The frequency of this mode is strongly diameter dependent. We experimentally confirm the existence of the radial breathing mode CdSe nanorods by Raman spectroscopy and it can be used to estimate the nanorod diameter from a Raman measurement alone.

¹Nanotechnology Research Institute, AIST, Tsukuba, Japan

²Nanotechnology Research Institute, AIST, Tsukuba, Japan, and JST-CREST

³Department of Physics, Tokyo Metropolitan University, Tokyo, Japan, and JST-CREST

¹Institut für Festkörperphysik, Technische Universität Berlin, Germany

²Institute for Physico-Chemical Problems of Belorussian State University, Minsk, Belarus

³Institut für Optik und Atomare Physik, Technische Universität Berlin, Germany

45

Spectroscopy of Single-Walled Carbon Nanotubes in Aqueous Surfactant Dispersion

<u>Dania Movia</u>¹ Elisa Del Canto¹ Silvia Giordani¹ School of Chemistry/CRANN, Trinity College Dublin, Dublin 2, Ireland

Optical studies of single-walled carbon nanotubes (SWNTs) have advanced greatly since the discovery of structured near-infrared band gap photoluminescence from nanotubes dispersed in aqueous surfactant suspensions [O'Connell, Science, 2002, 297, 593]. In our work, we have solubilised different batches of SWNTs in Milli-Q water using SDBS. SWNT samples have been chosen by varying three different parameters: the percentage of impurities present in the tubes, the amount of defects introduced in their graphitic structure and/or the functional groups expressed on their surface. Near-infrared Absorption and Emission Spectroscopy as well as Raman Spectroscopy have been carried out on all solutions. The differences in the spectroscopic results have been evaluated in relationship with the purity, oxidation and functionalization grade of the SWNTs utilized. Moreover, the resulting spectral data have been analyzed, using established findings in SWNT optical spectroscopy, to provide a detailed description of the semiconducting SWNT content of the samples: diameter distribution and (n,m)-species relative abundance have been assigned from fluorimetric intensities.

46

Raman spectroscopy of single wall carbon nanotubes functionalized with terpyridine-ruthenium complexes

M. Müller K. Papagelis J. Maultzsch A. A. Stefopoulos E. K. Pefkianakis A. K. Andreopoulou J. K. Kallitsis C. Thomsen

¹Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany

²Materials Science Department, University of Patras, 26504 Patras, Greece

A resonant Raman scattering study on single-wall carbon nanotubes (SWCNTs) decorated with terpyridine-Ru(II)-terpyridine (tpy-Ru(II)-tpy) moieties is presented. We compare samples efficiently synthesized bearing either monomeric or polymeric side chain tpy-Ru(II)-tpy dicomplexes following the âgrafting toâ and âgrafting fromâ approaches, respectively [1]. From the extracted resonance profiles of the radial breathing modes (RBMs) the chiral indices of the corresponding tubes are assigned [2]. We observe significant changes in the transition energies and the widths of the resonance windows due to chemical modification of SWCNTs. Interestingly, the polymer-wrapped sample exhibits significant RBM frequency shifts accompanied with drastic intensity alterations [3]. We discuss our findings in the context of a possible selectivity to certain tube species or diameters.

³Department of Chemistry, University of Patras, 26500 Rio-Patras, Greece

[1] A. A. Stefopoulos et al., Journal of Polymer Science Part A: Polymer Chemistry (to be published). [2] J. Maultzsch et al., Phys. Rev. B 72, 205438 (2005). [3] V. A. Sinani et al., J. Am. Chem. Soc. 127, 3463 (2005).

47

Sequence-Specifically Addressable DNA-SWCNT Complexes

Katharina Müller¹ Clemens Richert²

¹Institut für Organische Chemie, Universität Karlsruhe (TH),

Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany

²Institut für Organische Chemie, Universität Stuttgart,

Pfaffenwaldring 55, 70569 Stuttgart, Germany

Single-walled carbon nanotubes (SWCNT) are attractive building blocks for molecular electronics and novel materials. Generating functional architectures with SWCNTs requires methodologies for dispersing the nanotubes, purifying them, and depositing them within a functional molecular context. We have previously reported the effect of length and sequence of DNA on complexes with carbon nanotubes. We showed that DNA-SWCNT complexes are kinetically too stable to allow for hybridization to extraneously added, complementary DNA strands. This prompted us to develop new DNA sequence motifs that allow for hybridization to complementary strands and solubilization of SWCNTs simultaneously. Here we report that hairpin-forming oligodeoxynucleotides give suspension of SWCNTs that are more concentrated than those reported for other DNA sequences. Further, the resulting complexes bind single-stranded DNA sequence-specifically, as demonstrated for fluorophore-labeled targets. Finally, we show that the designed non-covalent complexes can be formed with SWCNTs that are predominantly of a single helicity, purified via density gradient ultracentrifugation.

48

Sensing near to mid infrared light with a fullerene/silicon hybrid heterojunction

 $\underline{\text{Helmut Neugebauer}^1}$ Gebhard J. Matt² Thomas Fromherz² Mateusz Bednorz² Saeed $\overline{\text{Zamiry}^3}$ N. Serdar Sariciftci¹

¹LIOS, Physical Chemistry, Johannes Kepler University Linz, Austria

²Institute for Semiconductor and Solid State Physics, Johannes Kepler University Linz, Austria

³Christian Doppler Laboratory for Surface Optics, Johannes Kepler University Linz, Austria

We demonstrate a low energy infrared light sensing scheme based on a fuller enederivative (PCBM)/boron doped silicon hybrid heterojunction. On top of the p-Si substrate a PCBM thin film has been prepared by spin-coating. By thermal evaporation of aluminum, ohmic contacts to PCBM as well as to p-Si are maintained. In dark, an almost ideal Schottky diode behaviour is observed. Under IR illumination,the heterojunction PCBM/Si absorbs in a lower energy range than the energy gaps of the semiconductors, and generates a primary photoâcurrent. The IV-characteristics under broadband IR light illumination at 80K features an open circuit voltage of 0.5V and a short-circuit current in the range of several nA/cm2. The photo-current between 80K and 220K has been spectrally resolved by Fourier Transform IR spectroscopy. Above a threshold of 0.4 eV, the photo-current increases linearly up to the fundamental energy gap of silicon (1.17 eV). A theoretical model describing the absorption process across the heterojunction will be presented. The scientific relevance and the simple CMOS compatible fabrication process make the presented hybrid approach a promising candidate for widespread applications.

49

Purity Evaluation of Single-Wall Carbon nanotubes based on Raman Spectroscopy

 $\underline{\text{Daisuke Nishide}}^1$ Yasumitsu Miyata 1 Kazuhiro Yanagi 1 Takeshi Tanaka 1 Hiromichi Kataura 1

¹Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba

Purity evaluation is an important problem awaiting solution in the fundamental research field and the consumer market of single wall carbon nanotube (SWCNT). For the quantitative purity evaluation, we need probe signals which are proportional to the abundance of SWCNTs in the sample and a 100% purity SWCNT sample as a standard. Intrinsic optical absorption intensity of SWCNTs can be used as a probe signal for the purity evaluation. However, a baseline correction is required to obtain the accurate intensity of SWCNTs from the spectrum because a tail of the broad UV absorption is overlapping. On the other hand, Raman intensity is also related to the intrinsic optical absorption of SWCNT by way of the resonance effect. In this paper, we show that the Raman signal from the isolated SWCNTs in a water solution is proportional to the abundance of SWCNTs. Further, extremely purified SWCNT sample can be obtained easily by an ultracentrifugation as the 100% standard. Finally we propose a new method for quantitative purity evaluation of SWCNTs based on Raman spectroscopy. We will introduce the detailed protocol and will demonstrate the purity of various SWCNTs evaluated by this method.

50

Effect of ammonia on the growth behavior of nitrogen-doped carbon nanotubes.

Florian Nitze¹ Thomas Wågberg¹ Britt Andersson² Mingguang Yao¹

Nitrogen-doped carbon nanotubes are grown on e-beam deposited thin metal films (cobalt/iron) by chemical vapour deposition. The approach uses ammonia as supporting gas to form nano catalyst particles in the pretreatment phase. Ammonia is also used as the nitrogen source. The effect of ammonia on the grown structures at different temperatures (800 °C and 900 °C) is investigated by SEM, TEM and Raman spectroscopy. It could be shown that by the support of ammonia carpets of aligned CNTs can be grown even on thicker metal films (5nm) than usually used. At the same time ammonia is inducing a high amount of defects but this effect changes significantly with temperature. At 800 °C defects are clearly ammonia induced. At 900 °C this mechanism reduces or even inverts.

51

Carbon Nanotube Containing Medium as a Saturable Absorber for Diode-Pumped YAG:Nd Solid State Laser Operated at Wavelength 1.32 μ m

<u>Petr A. Obraztsov</u>¹ Sergey V. Garnov² Elena D. Obraztsova² Anatoly S. Lobach³ Anatoly A. Sirotkin² Yury P. Svirko¹

A diode pumped passively mode-locked YAG:Nd laser operated at wavelength 1.32 $\mu \rm m$ has been developed using a novel saturable absorber based on single-wall carbon nanotubes incorporated in a polymer matrix. Laser pulses with the output energy up to 70 $\mu \rm J$ and the duration of 50 ps have been generated. A stable mode-locking regime has been obtained with the pump frequency up to 1kHz. The single-wall carbon nanotubes synthesized by a high pressure CO decomposition (HiPCO) technique have been used due to the appropriate working spectral range [1]. The individual nanotubes were distributed into a polymer (carboxymetylcellulose) matrix. An absorption spectrum and kinetics of electron excitation relaxation have been measured by a pump-probe technique. [1]. S.V. Garnov, S.A. Solokhin, E.D. Obraztsova, A.S. Lobach, P.A. Obraztsov et al. âPassive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at $1.34\hat{1}^1_4 \rm m\hat{a}$, Laser Physics Letters 4 (2007) 648. The work was supported by RFBR projects 08-02-91755-AF and 07-02-91033AF.

¹Dept. of Physics, Umeå Universitet, Umeå, Sweden

²Dept. of Applied Physics and Electronics, Umeà Universitet, Umeå, Sweden

¹Department of Physics and Mathematics, University of Joensuu, Joensuu

²A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow ³Institute of Problems of Chemical Physics, RAS, 142432, Chernogolovka, Moscow region, Russia

52

GRAPHENE LAYERS ON THE SURFACE OF GRAPHITE FLUORIDE C2F: SYNTHESIS, STRUCTURE, AND ELECTRICAL CONDUCTIVITY

<u>Alexander V. Okotrub</u>¹ Lyubov G. Bulusheva¹ Konstantin S. Babin¹ Igor P. Asanov¹ Artem V. Guselnikov¹ Nikolay F. Yudanov¹

¹Nikolaev Institute of Inorganic Chemistry SB RAS, Siberian Branch Russian Academy of Science, Novosibirsk

Fluorination of graphite using a gaseous BrF3 at room temperature yields graphite fluoride of a C2F composition. The material consists of light transparent plates, which are resistant to the electrical current. We developed procedure for reduction of the upper layers of the graphite fluoride and obtained thin current-conductive graphite layers on the surface of insulating C2F matrix. The surface of pristine graphite fluoride has mosaic structure from the fluorinated regions having a size of 2 nm. Due to weak bonding of fluorine atoms with the surface carbon atoms the upper layers of C2F are easy restored to the graphitic state under the action of water vapors. The measurement of relative intensity of angle-resolved X-ray photoelectron C 1s spectrum excited by various wave-length radiations has estimated that the thickness of graphitic layers is less than 1 nm. A change in the structure of graphite fluoride under the reducer action was studied by atomic-force microscopy. An electrical conductivity of the samples was measured depending on the restoring degree.

53

Synthesis-kinetics of vertically aligned carbon nanotubes

Niklas Olofsson¹ Goo-Hwan Jeong² Eleanor E. B. Campbell³

Before the properties of carbon nanotubes can be fully exploited in the many proposed applications their synthesis has to be understood and controlled.

Vertically aligned nanotube arrays with heights over 800 μ m have been grown using acetylene with iron as catalyst on alumina support in TCVD. The nanotubes were multi-walled and the number of walls increased with increasing partial pressure of acetylene.

The kinetics was studied to link the macroscopic properties to the microscopic processes of synthesis. It was found that the addition-rate of carbon was proportional to the coverage of acetylene molecules on the catalyst nanoparticle. The poisoning of the catalyst was suggested to be partly due to gas-phase pyrolysis.

In certain conditions of synthesis it has been found that the macroscopic pattern of the catalyst areas influenced the microscopic properties of the CNTs. Larger areas

¹Department of Physics, University of Gothenburg, Sweden

²Department of Advanced Materials Science and Engineering, Kangwon National University, Korea

³School of Chemistry, Edinburgh University, Scotland

of catalyst gave longer carbon nanotubes, but with a similar amount of carbon atoms since they had fewer number of walls. To explain the observations a model based on acetylene depletion was proposed. The results indicate that the number of walls was determined at an early stage of the synthesis.

54

Concept of Graphene as a Macromolecule: Spectrum, Conductance, and Tunneling

Alexander I Onipko¹ Lyuba Malysheva¹

The exact model description of pi electrons in graphene as an alternant plane macromolecule is elaborated. The model suggests an instructive alternative to the approach with reference to the honeycomb lattice periodic in the A and B sublattices. New results on the spectrum, conductance, and tunneling will be reported.

55

Transparent Conductive Film Using Oligo-Graphite

Hye Jin Park¹ Viera Skakalova¹ Siegmar Roth²

¹Max Planck Institute for Solid State Research, Stuttgart

The transparent conductive electrode using single walled carbon nanotubes (SW-NTs) has been studied intensively for last decade. Recently, graphite nanoplatelets (GNPs) have emerged as a promising filler which shows enhanced thermal and electrical conductivity in composite materials. In this study, we present the electrical conductivity as well as transmittance of the thin films which could be prepared by transferring oligo-graphite, which has less than 10 layers of graphenes, onto polycarbonate film. Oligo-graphite was synthesized on Ni coated SiO2/Si substrate via CVD method using CH4 and H2 gases at 1000 oC. The synthesized oligo-graphite was transfered to polycarbonate (PC) film via etching of nickel layer by hydrochloric acid and washed with distilled water. The film transmittance and sheet resistance could be controlled by changing the synthetic condition of the oligo-graphite as well as by doping the thin film. The films were characterized by Raman, optical microscopy, SEM, and UV/Vis/NIR spectroscopy.

¹Bogolyubov Institute for Theoretical Physics, Kyiv

²SINEUROP Nanotech GmbH

56

Characterization of dye molecules and carbon nanostructures by tip-enhanced Raman spectroscopy

<u>Niculina Peica</u>^{1,2} Serge Röhrig³ Andreas Rüdiger^{3,4} Katharina Brose¹ Christian Thomsen¹ Janina Maultzsch¹

¹Solid State Physics Institute, Technical University Berlin, Hardenbergstr. 36, 10623 Berlin

²Central Division of Analytical Chemistry, Research Center Jülich, Leo-Brandt-St., 52425 Jülich, Germany

 3 Institute of Solid State Research and Center of Nanoelectronic Systems for Information Technology, Research Center JÃ $\frac{1}{4}$ lich, Leo-Brandt-St., 52425 Jülich, Germany

⁴INRS Énergie, Matériaux et Télécommunications, 1650 boul. Lionel Boulet, J3X 1S2 Varennes (Québec), Canada

The recent development of Raman instrumentation with submicron spatial resolution has created new possibilities to investigate nanomaterials such as carbon nanotubes and nanofibers or other nanosized particles. Recently, a new approach for nanosized lateral resolution in Raman spectroscopy, called tip-enhanced Raman spectroscopy (TERS), sometimes referred to as "apertureless scanning near-field optical microscopy (SNOM)"has been developed [1]. TERS is a high-sensitivity and high spatial-resolution analytical technique based on the strong field enhancement provided by a sharp metallic tip. Near-field Raman scattering has been successfully used to study the interaction between a metal-coated tip and carbon nanostructures [2,3]. The enhanced and localized surface plasmons in the apex provide high resolution imaging as well as the detection of vibrational modes that are not well visible with confocal Raman spectroscopy. We present confocal Raman and TERS spectra of dye molecules and other nanostructures. [1]. R.M. Stöckle et al. Chem. Phys. Lett. 318 (2000) 131. [2]. Y. Inouye et al. Proc. SPIE 6324 (2006) 63240K. [3]. A. Hartschuh et al. Surf. Interface Anal. 38 (2006) 1472.

57

Raman Characterization of the Antipodal C_{60} and Anthracene Bis-Adduct

 $\underline{\text{Rudolf Pfeiffer}^1}$ Hans Kuzmany
¹ Bernhard Kräutler² Christian Kramberger¹ Manuel Melle-Franco³

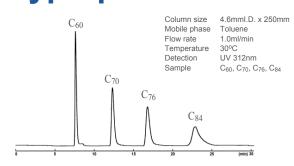
In order to produce 1D spin chains by filling magneto-fullerenes into SWCNTs we stumbled upon the problem of reliably adjusting the fullerene spacing. Simulations suggest that the antipodal bis-adduct of C_{60} and anthracene is a good candidate for the engineering of the fullerene spacing.


¹Fakultät für Physik, Universität Wien, Austria

²Institute of Organic Chemistry, University of Innsbruck, Austria

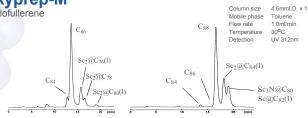
³Physical Sciences, University of Kent, UK

First, the mono-adduct was produced which was then turned into various bis-adducts by a Diels-Alder reaction. In a final purification step the almost pure antipodal bis-adduct was obtained. The FT-Raman spectra of the adducts showed strong C_{60} derived peaks. Additionally, they exhibited a number of smaller peaks due to the reduced symmetry. No obvious anthracene peaks could be found. The main proof of the functionalization was the increased number of peaks in the adduct spectra and a downshift of the $A_{\rm g}(2)$ -derived modes by 5 and 10 cm⁻¹ for the mono- and bis-adducts, respectively. Additionally, the adducts exhibited strong peaks at the unshifted $A_{\rm g}(2)$ position. This was taken as a hint for a decay of the adducts until calculated Raman spectra using Gaussian also showed these peaks. This work was supported by FWF-project I83-N20 (ESF IMPrESS).


Poster session

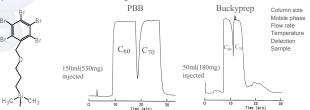
Tuesday, March 10

COSMOSIL Buckyprep - Standard column for fullerene separation



COSMOSIL Buckyprep-M

- Designed to separate metallofullerene



Toluene 18ml/min Room temperature UV 285nm Crude fullerenes (3.5mg/ml)

COSMOSIL PBB

Preparative separation of Fullerenes and higher Fullerenes

A comprehensive index with more than 100 chromatograms for fullerene separation is available. Please feel free to contact us for a copy.

NACALAI TESQUE, INC.

Nijo Karasuma, Nakagyo-ku, Kyoto 604-0855 JAPAN TEL:+81-75-251-1730 Website:http://www.nacalai.com FAX:+81-75-251-1763 E-mail:info.intl@nacalai.com

Optics of carbon nanotubes

8:30 - 9:30 V. Perebeinos, US

Understanding environmental effects on the electronic and vibrational excitations and dynamics in carbon Nanotubes

9:30 - 10:00 R. Saito, JP

Exciton states and phonon softening phenomena in single wall carbon nanotubes

- 10:00 10:30 Coffee break
- 10:30 11:00 A. Hartschuh, DE

Near-field optical investigations of individual single-walled carbon nanotubes

11:00 - 11:30 H. Telg, DE

Characterization of isolated metallic and semiconducting nanotubes by Raman spectroscopy

11:30 - 12:00 A. Jorio, BR

Disorder in sp^2 nano-carbons: doping, ion bombardment and substrate interaction

- 12:00 17:00 Mini Workshops
- 17:00 18:30 Dinner
- 18:30 19:00 S. Maruyama, JP

Spectral features due to dark exciton in photoluminescence map of single-walled carbon nanotubes

19:00 - 19:30 Malic, DE

 $\label{linear optical spectra and relaxation dynamics in single-walled carbon nanotubes$

19:30 – 20:00 B. Lounis, FR

 $Optical\ spectroscopy\ of\ individual\ single-walled\ cCarbon$ nanotubes

20:00 - 20:30 Z. K. Tang, HK

Resonant Raman of 0.3 nm single-walled carbon nanotubes

Wednesday, March 11

8:30

Understanding environmental effects on the electronic and vibrational excitations and dynamics in carbon nanotubes

Vasili Perebeinos

Watson Research Center, IBM - Watson, Yorktown Heights

The electronic, vibrational, and excited states dynamics in carbon nanotubes (CNT) can be strongly influenced by the environmental effects. In this talk we will review recent advances in the role of the CNT environment on the electronic states, phonon and exciton dynamics probed by the optical spectroscopy.

The transport properties of CNTs on polar substrates are determined by the surface polar phonon (SPP) mode scattering and can be modified by the choice of the insulating substrate. SPP scattering determines the low field mobility in CNTs on ${\rm SiO_2}$ even at room temperatures and it serves as an efficient channel for heat dissipation in CNTs under high bias conditions. The latter can be probed by the Raman spectroscopy to map out the electrically-excited phonon populations and the power dissipation pathways in functioning carbon nanotube transistors.

Finally, we address the long puzzling question regarding the nature of the dominant decay channel of the low energy excited states and the potential of optoelectronic applications of CNTs. The non-radiative lifetime of strongly bound excitons is predicted to depend strongly on the free carrier density.

9:30

Exciton states and phonon softening phenomena in single wall carbon nanotubes

Riichiro Saito¹ Kenichi Sasaki² Jin Sung Park¹ Kentaro Sato¹

Two subjects on optical properties of single wall carbon nanotubes (SWNTs) are discussed. The first subject is a photoluminescense (PL) problem of SWNTs. Because of the symmetry of a SWNT, the lowest exciton states is an optically forbidden state (dark exciton state). We will present our numerical calculation of the exciton and show some problems in comparison with the recent PL measurements under the magnetic field. Another subject is phonon softening phenomena in metallic carbon naotubes, which are known as the Kohn anomaly of phonons. Because of anisotropic electron-phonon interaction in the k space around the K point, resonance Raman spectra of an isolated SWNT shows anomalous phonon softening phenomena which depend on chiral angle. We will explain the chirality dependent phonon softening phenomena by a time reversal gauge field.

¹Department of Physics, Tohoku University, Sendai

²Advanced Sciences of Matter, Hiroshima University

10:30

Near-field optical investigations of individual single-walled carbon nanotubes

<u>Achim Hartschuh</u>¹ Huihong Qian¹ Carsten Georgi¹ Miriam Boehmler¹ Tobias Gokus¹ Lukas Novotny² Paulo Araujo³ Ado Jorio³ Mark C. Hersam⁴

We investigated single-walled carbon nanotubes on substrates using tip-enhanced near-field optical microscopy (TENOM) [1]. TENOM exploits the enhanced electric fields in close proximity to a sharp metal tip to locally increase both excitation and emission rates resulting in excellent spatial resolution (<15 nm), and high detection sensitivity. Simultaneous detection of tip-enhanced Raman scattering and photoluminescence (PL) allowed us to explore the correlation between strongly localized PL and charged doping sites [2]. DNA-wrapping of nanotubes was found to result in pronounced emission energy variations on a 10 nm length scale [3]. Surprisingly, DNA-wrapped nanotubes remain highly luminescent on metal films indicating additional field enhancement through the interference of metal-induced near-field modes. Coupling to these modes also leads to increased Raman scattering and substantial lifetime shortening of the emissive exciton state to below 3 ps. Finally, we report on our efforts to combine time-resolved PL techniques and TENOM. [1] A. Hartschuh, Angew. Chem. 47, 8178 (2008). [2] I. O. Maciel et. al, Nature Mat. 7, 878 (2008). [3] H. Qian et. al, Nano Lett. 8, 2706 (2008).

11:00

Characterization of isolated metallic and semiconducting nanotubes by Raman spectroscopy

<u>Hagen Telg</u>¹ Martin Fouquet² Janina Maultzsch¹ Yang Wu³ Bhupesh Chandra⁴ James Hone⁴ Tony F. Heinz³ Christian Thomsen¹

 1 Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany

 $^2\mathrm{Department}$ of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom

³Departments of Electrical Engineering and Physics, Columbia University, New York 10027, USA

 $^4\mathrm{Department}$ of Mechanical Engineering, Columbia University, New York 10027, USA

Raman spectroscopy is a well established method to probe the presence of metallic nanotubes in a typical carbon nanotube sample, containing a large variety of different types of nanotubes. We show that experience based on nanotube ensembles

¹Department Chemie und Biochemie and CeNS, LMU Muenchen, Germany

²The Institute of Optics, University of Rochester, Rochester, NY, USA

³Departamento de Fisica, UFMG, Belo Horizonte, Brazil

⁴Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois, USA

can not be transferred directly to experiments on isolated nanotubes. Resonance conditions and a precise analysis of the lineshapes of the Raman modes are necessary to discriminate metallic from semiconducting nanotubes. We analyze the high-energy Raman modes (HEMs), G^+ and G^- , in a pair of one metallic and one semiconducting nanotube grown across a 100 μ m wide slit. By combining Rayleigh scattering with Raman resonance profiles of the radial breathing mode and the HEMs, we show that the two peaks, G^- and G^+ , originate from different nanotubes. The G^- peak is the LO mode of the metallic tube; it is broadened and down shifted due to strong electron-phonon coupling. The G^+ peak is due to the LO mode in the semiconducting tube. We conclude that the presence of the G^+ peak at 1590 cm⁻¹ in an assumed single isolated metallic nanotube very likely originates from an additional semiconducting nanotube.

11:30

Disorder in ${\rm sp^2}$ nano-carbons: doping, ion bombardment and substrate interaction

Ado Jorio

Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte

Disorder effects in sp² carbon systems are studied experimentally. In graphene and graphite, the effect of ion bombardment in the real and momentum spaces are correlated, as obtained by scanning tunneling microscopy and Raman spectroscopy measurements. In carbon nanotubes, charging effects due to substitutional doping (with boron, nitrogen and phosphorous) and tube-substrate interactions are studied using Raman spectroscopy, near-field spectroscopy and microscopy, atomic force microscopy and electric force microscopy. The observed phenomena are explainned based on the properties of electrons and phonons in the respective sp² carbon systems.

18:30

Spectral features due to dark exciton in photoluminescence map of singlewalled carbon nanotubes

Shigeo Maruyama

Department of Mechanical Engineering, The University of Tokyo, Tokyo

Optical absorption by excitonic phonon sideband in photoluminescence (PL) excitation spectra [1] is well recognized as due to the strong phonon coupling to dark exciton with slightly higher energy than bright one. Here, we performed detailed PL spectroscopy studies of three different types of single-walled carbon nanotubes (SWNTs) by using samples that contain essentially only one chiral type of SWNT, (6,5), (7,5), or (10,5). The observed PL spectra unambiguously show the existence of an emission sideband at about 145 meV below the lowest singlet excitonic (E11) level. We find that the energy separation between the E11 level and the sideband is almost independent of the SWNT diameter. Based on this, we ascribe the origin

of the observed sideband to coupling between K-point TO phonons and dipole-forbidden dark excitons [2]. Furthermore, absorption features by cross-polarized excitations [3] and existence of quasi-dark absorption in cross-polarized excitation will be discussed.

Y. Miyauchi, S. Maruyama, Phys. Rev. B, 74 (2006) 35415.
 Y. Murakami,
 S. Maruyama, arxiv.org/abs/0811.4692.
 Y. Miyauchi, M. Oba, S. Maruyama,
 Phys. Rev. B 74 (2006) 205440.

19:00

Linear optical spectra and relaxation dynamics in single-walled carbon nanotubes

 $\underline{\rm Ermin~Malic}^1$ Matthias Hirtschulz 1 Janina Maultzsch 2 Stephanie Reich 3 Andreas ${\rm Knorr}^1$

¹Institut für Theoretische Physik, Technische Universität Berlin

We show the potential of the density matrix theory for investigating optical properties of carbon nanotubes (CNTs). The theory is based on Bloch equations describing the dynamics of population and transition probabilities. In combination with TB wavefunctions, the approach allows microscopic calculation of linear and nonlinear optical properties of arbitrary CNTs. Its advantage lies in the straightforward inclusion of non-equilibrium many-particle effects, such as relaxation of electrons and phonons.

We illustrate the strength of the theory by performing calculations of excitonic absorption and Rayleigh scattering spectra for arbitrary CNTs: Kataura plots for excitation and binding energies are shown. Chirality dependence of the oscillator strength is investigated showing enhanced intensity for tubes with increasing chiral angle. We achieve good agreement with measured Rayleigh scattering spectra for metallic CNTs - with respect to peak splitting, intensity ratio, and peak asymmetry. The potential of our approach is further illustrated by investigating Coulomb driven intra-subband relaxation dynamics in CNTs. We find relaxation times on the fs timescale depending on the diameter.

19:30

Optical spectroscopy of individual single-walled carbon nanotubes

Brahim Lounis

CPMOH, CNRS and Bordeaux University, Talence

Current methods for producing single-walled carbon nanotubes (SWNTs) lead to heterogeneous samples containing mixtures of metallic and semiconducting species with a variety of lengths and defects. Optical detection at the single nanotube level offer the possibility to examine these heterogeneities provided that all SWNT types are equally well detected. Photothermal Heterodyne technique allows to perform

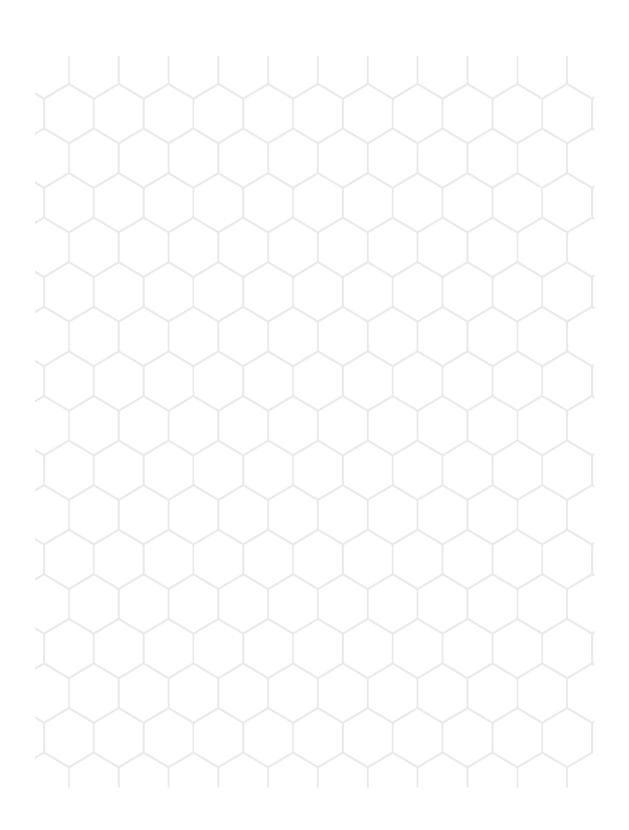
²Institut für Festkörperphysik, Technische Universität Berlin

³Fachbereich Physik, Freie Universität Berlin

highly sensitive imaging and absorption spectroscopy of individual small diameter SWNTs. Because it probes light absorption, the method enables identification of both semiconducting and metallic SWNTs. Using timeâresolved and cw lumine-scence spectroscopy, the absorption cross section of highly luminescent individual single-walled carbon nanotubes is determined. A mean value of 10-17 cm2 per carbon atom is obtained for (6,5) tubes excited at their second optical transition, and corroborated by single tube photothermal absorption measurements. Biexponential luminescence decays are systematically observed, with short and long lifetimes around 45ps and 250ps. This intrinsic behavior is attributed to the band edge exciton fine structure with a dark level lying a few meV below a bright one.

20:00

Resonant Raman of 0.3nm single-walled carbon nanotubes


Zi Kang Tang¹ J. P. Zhai² R. Saito³ Ping Sheng¹

Nano-porous single crystals can serve as ideal nano-reactors and assume variety of nano-structures those are usually not stable in free space. Their mono-dispersed porous with a macro-size of crystal, their optical transparency and electrical insulating properties, all make them attractive hosts for numerous applications. The periodic array of crystal porous makes it possible to build a quasi-3D structure for carbon nanotubes which is of importance for making optical and transport devices as it is. Using aluminophosphate porous single crystal of AlPO4-11 (AEL) as the template, we fabricated smallest single wall carbon nanotubes (SWNTs) with a diameter of only 0.3 nm. Energetically, the 0.3 nm SWNTs are not stable in free space, confinement in the nano-channels makes them very stable. Polarized and resonant Raman scattering revealed that these 0.3nm SWNTs are of (2,2) armchair symmetry. Interestingly, the (2,2) SWNT has two metastable ground state corresponding to two slightly different lattice constants in the axial direction, one state is metallic and the other is semiconducting.

¹Hong Kong University of Science and Technology, Hong Kong

²College of Electronic science and Technology, Shenzhen University,

³Department of Physics, Tohoku University and CREST, JST,

Wednesday, March 11

Optics of carbon nanotubes

Applications of carbon nanotubes

8:30 – 9:30	R. Baughman, US Nanotube applications: from fascinating dreams to increasingly the marketplace
9:30 – 10:00	D. Carroll, US Progress toward negative index lenses
10:00 – 10:30	Coffee break
10:30 – 11:00	C. Kramberger, AT Sparse random arrays of pristine and doped carbon nanotubes: a tuneable meta material
11:00 – 11:30	A. Bruinink, CH In vitro effects of carbon based material
11:30 – 12:00	Y. H. Lee, KR Doping strategy of carbon nanotubes
12:00 – 17:00	Mini Workshops
17:00 – 18:30	Dinner
18:30 – 19:00	R. C. Haddon, US Advances in the chemistry and applications of carbon nanomaterials
19:00 – 19:30	G. S. Duesberg, IE Synthesis and characterisation of ultra-thin conducting carbon films
19:30 – 20:00	J. O. Lee, KR Sensing mechanism behind the metal-decorated SWNT- FETs
20:00 - 21:00	Poster Session III – THU

Thursday, March 12

8:30

Nanotube applications: from fascinating dreams to increasingly the marketplace

Ray Baughman¹ Ali Aliev¹ Jiyoung Oh¹ Mikhail Kozlov¹ Alexander Kuznetsov¹ Shaoli Fang¹ Alexander DeFonseca¹ Raquel Robles¹ Marcio Lima¹ Mohammad Haque¹ Yuri Gartstein¹ Mei Zhang² Anvar Zakhidov¹

- ¹NanoTech Institute, University of Texas at Dallas, Richardson
- ² Department of Industrial Engineering, Florida State University, Tallahassee, FL 32306, USA.

In a moment of foolishness, the speaker agreed to expand a talk on a fundamentally new type of carbon nanotube artificial muscle to one that provides an applications perspective for the entire nanotube area. This abstract describes only the first half of this talk. We have developed a fundamentally new type of artificial muscle, which operates in air to generate giant strokes and stroke rates of 220% and 3.7 x 104%/s, respectively. Charge-driven resonant and dc linear actuation result for volt to kilovolt drive voltages, and temperatures from below 80 K to above 1900 K. Using mechanical and electrical resonances, these artificial muscles provided $\pm 30\%$ oscillatory actuation at a kHz when driven by 10 Vrms. In the high modulus direction, where actuator stroke is a few percent, stress generation was 32-fold higher than for natural muscles. Actuation in this direction differs in sign from that in sheet width and thickness directions. We theoretically explain this sign reversal using giant observed Poissonâs ratios of up to 15, which provide a negative linear compressibility for the sheets.

9:30

Progress toward negative index lenses

<u>David Carroll</u>¹ Jerry Kielbasa¹ JungHo Park¹ Junping Zhang¹ Baxter Mcguirt¹ Richard Williams¹

 $^1\mathrm{Center}$ for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem NC 27109

Developing Veselago's negative index materials for imaging applications in the visible regime has proven challenging due to the exponential loses in many materials experienced at short wavelengths. To be sure, there have been some demonstrations of negative refraction from systems in which hyperbolic dispersion exists (the permittivity is negative, but not the permeability), as well as some intriguing suggestions from nanolithographed split-ring resonator systems. However, to date a true demonstration of focusing and imaging in either the hyperbolic or resonant systems hasnât been forthcoming. In this work, we describe the use of self assembly methods to construct both hyperbolic and resonant lenses. The optical properties of assembled and aligned nanorod array â based "hyperbolic dispersion"lenses are described using diffractometry and interferometry. We then demonstrate imaging

through such a system which is consistent with our expectations for a negative index lens. From this structure we can now add resonant components to address the magnetic component of the index. Calculations indicate complete phase recovery will be achieved for such a lens at thicknesses of only a few microns. Preliminary optical data will be presented on these structures.

10:30

Sparse random arrays of pristine and doped carbon nanotubes: a tuneable meta material

Christian Kramberger¹ Ralf Hambach² Friedrich Roth³ Roman Schuster³ Roberto Kraus³ Martin Knupfer³ Erik Einarsson⁴ Shigeo Maruyama⁴ Lucia Reining² Thomas Pichler¹

¹Faculty of Physics, University of Vienna, Vienna

Sparse arrays of aligned carbon nanotubes are a fairly dilute meta-material with strongly polarized dielectric properties. Angle resolved electron energy loss-spectroscopy evidences twofold plasmons for the π and the σ interband excitations in freestanding single wall carbon nanotubes. The bare existence of twofold plasmon dispersions is a novelty as compared to conventional bulk material, like graphite. These excitations are identified as a dispersive plasmon propagating along the nanotubes axis and its non-dispersive localized counterpart. The on-axis response is quantitatively identified as the in-plane response of a bare graphene sheet. Further, the dielectric properties of this system can be accurately tailored in in situ potassium intercalation. We evidence the emergence of a tuneable intraband charge career excitation. The dispersion of the new plasmon shows that it is the surface plasmon of a metallic meta material. These findings are indeed a critical empirical test for our understanding of strongly polarized nano-meshed meta-materials.

11:00

In vitro effects of carbon based materials

 $\underline{\text{Arie Bruinink}}^1$ Ursina Tobler 1 Sabrina Hasler 1 Pius Manser 1 Peter Wick 1 EMPA, St. Gallen

Carbon based materials are increasingly in the focus of interest because of their very specific mechanical and electrical characteristics. The increased knowledge about the applicability results in a steadily and rapid increase in number of patents. Concurrently, the production of, and as result of that the exposure to, these materials will increase in the near future. However numerous recent publications prove that carbonanotubes (CNT) may induce adverse effects after exposure. So far not much is known about their toxicomechanism. In the present study we determined single walled CNT (SWCNT) concentration-time â effect relationships.

²Laboratoire des Solides Irradi´es, Ecole Polytechnique, Palaiseau

³IFW Dresden, Dresden

⁴University of Tokyo, Department of Mechanical Engineering, Tokyo

We found that dependent on the parameter measured and purity of the material peak concentrations or exposure duration and by that the area under the curve (AUC) is the key factor defining the toxicity. In addition, it was investigated in how far assays like MTT-test and the reactive oxygen species (ROS) test based on 2',7'-dichlorofluorescin diacetate (H2DCF-DA) conversion are applicable for investigating SWCNT toxicity. At the SWCNT concentration range used of both assay only the H2DCF-DA test had clear-cut limitations in its use.

11:30

Doping strategy of carbon nanotubes

Young Hee Lee

Department of Physics, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, 440-746

The electronic structures of carbon nanotubes are governed strongly on the diameter and chirality. Since the nanotubes are exposed to the surface, electronic structures are expected to be severely modified by environment such as solvent and adsorbates. Yet, the effect of solvent and adsorbates to the electronic structures of carbon nanotubes has been rarely investigated. In general, a charge transfer between adsorbates and carbon nanotubes occurs, therefore modifying the electronic structures of carbon nanotubes. By precisely understanding the charge transfer mechanism, one may engineer carbon nanotubes to be suitable for many applications in electronic devices such as transistors and transparent conducting films. We will discuss a method of precisely engineering p- and n-type doping.

18:30

Advances in the chemistry and applications of carbon nanomaterials

Robert C. Haddon

Center for Nanoscale Science and Engineering, University of California, Riverside

The ability to chemically modify carbon materials offers considerable scope for the control of their chemical and physical properties. I will discuss our recent work on the synthesis, purification, characterization and chemistry of single-walled carbon nanotubes, graphite nanoplatelets and graphene together with selected applications involving their use in electronic devices, detectors, sensors, fuel cell components and thermal interface materials.

19:00

Synthesis and characterisation of ultra-thin conducting carbon films

 $\underline{\rm Georg~S.~Duesberg^1}$ Tarek Lutz^1 Shishir Kumar^1 Nick Whiteside^1 Gareth P. Keeley^1 Niall McEvoy^1

¹School of Chemistry and CRANN, Trinity College Dublin, Dublin

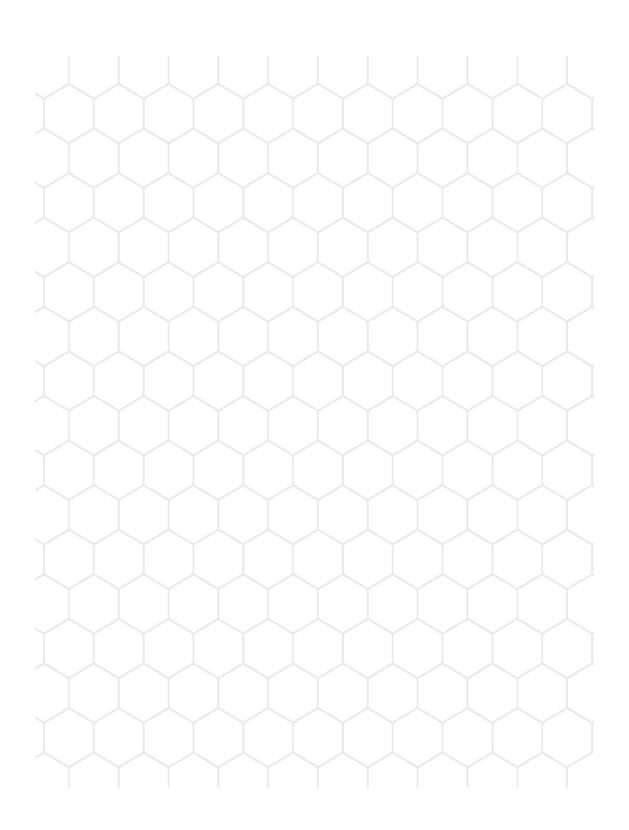
Two synthesis routes for Ultrathin conducting carbon layers (UCCLs) are undertaken: 1) catalyst free CVD deposition from carbon precursors and 2) annealing of resigns at elevated temperatures. Both ways yield planar UCCLs with thicknesses below 10 nm with a roughness below 1 nm. The layers are found to have conductivities up to 105 Sm, close to those of TiN or TaN, as well as recently published for large area graphene films. The CVD deposited pyrolytic carbon layers allow conformal filling of high aspect ratio structures. This combined with the possibility of residue free etching promises the integration with current silicon fabrication lines. For the pyrolysis resigns we employed in particular negative tone resists to directly structure the ultrathin conducting electrodes by optical and e-beam lithography. The layers have been characterised in structure and morphology and examples for integration are shown. The easy and economic fabrication techniques of UCCLs presented are major steps towards the use of carbon in VLSI applications such as conducting liners or gate electrodes, as well as flexible conducting electrodes for displays and solar cells.

19:30

Sensing mechanism behind the metal-decorated SWNT-FETs

<u>Jeong-O Lee</u>¹ Keum-Ju Lee¹ Hye-Mi So¹ Young-Seop Lo² Hyunju Chang¹ Ju-Jin Kim²

Metal decoration on single-wall carbon nanotubes (SWNT) have shown to be an efficient way to catalyze chemical reactions, improve field emission efficiency, and sensor performances. We show that metal-decorated SWNT field effect transistors can be used as biosensor platforms. Previously, metal cluster-decoration on SWNT sensors proven to give selectivity by catalytic reaction of Pd nanoparticles, and sensitivy enhancement was achieved by decorating Al nanoparticles. For biosensing applications, we use Au or Ni nanoparticles on SWNT as immobilization support for molecular recognition elements. Ni or Au nanoparticles were decorated on sidewalls of SWNT by electrochemical deposition, and we could control the size and density of nanoparticles by controlling different parameters such as sweep voltage, speed and metal salt concentrations. Thiolated probe DNA or peptide nucleic acid (PNA) can be covalently immobilized on Au nanoparticles, while his-tagged antibodies can be immobilized on Ni nanoparticles. Clear change of conductance observed upon immobilization and target binding, and we will explain those observed changes with


¹Korea Rearch Institute of Chemical Technology, Daejeon

²Department of Physics, Chonbuk National University, Jeonju 561-756

Applications of carbon nanotubes

Thursday, March 12

metal work function.

Thursday, March 12

Applications of carbon nanotubes

1

Pristine and intercalated single wall carbon nanotubes and graphite revisited: A key to graphene

<u>Thomas Pichler</u>¹ Christian Kramberger¹ Alexander Grüneis¹ Angel Rubio² Martin Knupfer³ Roman Schuster³ Denis Vyalikh⁴ Sergey Molodtsov⁴ Erik Einarsson⁵ Shigeo Maruyama⁵ Claudio Attaccalite² Lucia Reining⁶ Christine Giorghetti⁶ Ralf Halmbach⁶ Jörg Fink⁷ Rolf Follath⁷

In this contribution an overview about our recent results on the electronic and optical properties of pristine and intercalated aligned single wall carbon nanotubes and graphite using high energy spectroscopy techniques, namely angle resolved photoemission and electron-energy loss spectroscopy, as probes is presented. The consequences of doping on basic correlation effects and local field effects and their influence on the band structure and the plasmon dispersion are discussed in detail. Especially, we will show the impact of our results in order to unravel the underlying electronic and optical properties of graphene. Work supported by the DFG projects PI $440\ 3/4/5$.

2

Preparation and selective properties of a new composite material for electrochemical capacitor built of single-wall carbon nanotubes coated with the fullerene-palladium co-polymer and bithiophene polymer film

<u>Piotr Pieta</u>¹ Ganesh M. Venukadasula² Francis D'Souza² Wlodzimierz Kutner¹ Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

A new composite material for charge storage in electrochemical capacitors was devised and tested. It was built of electrophoretically deposited HiPCO single-wall carbon nanotubes, non-covalently surface-modified by 1-pyrenebutiric acid (pyr-SWCNTs), and then coated by electropolymerization with a film of mixed fullerene-palladium (C60-Pd) and bithiophene polymers. Both the electrophoretic and electropolymeric deposition was in situ monitored by piezoelectric microgravimetry with an electrochemical quartz crystal microbalance. The AFM imaging of the material showed tangles of pyr-SWCNTs bundles surrounded by globular clusters of the (C60-Pd)-bithiophene polymer. The pyr-SWCNTs/(C60-Pd)-bithiophene film

¹Faculty of Physics, Vienna University, Vienna

²Donestia Science Center, San Sebastian, Spain

³IFW-Dresden, Dresden, Germany

⁴TU-Dresden, Institut für Festkörperphysik, Dresden, Germany

⁵Tokyo University, Tokyo, Japan

⁶Ecole Polytechnique, Palaiseau, France

⁷BESSY II, Berlin, Germany

²Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA

revealed two potential windows of electrochemical activity, i.e. one at potentials more negative than ca. -0.40 V vs. Ag/AgCl and the other at more positive than ca. 0.40 V, characteristic for the C60 moiety electroreduction and thiophene moiety electro-oxidation, respectively. Both cathodic and anodic currents for the pyr-SWCNTs/(C60-Pd)-bithiophene film were higher than those for the control (C60-Pd)-bithiophene film due to higher area and hence capacitance of the former film.

3 Raman Scattering and X-Ray Diffraction from Ferrocene Encapsulated in Narrow Diameter Carbon Nanotubes

W. Plank¹ H. Kuzmany¹ H. Peterlik¹ R. Pfeiffer¹ T. Saito² S. Iijima³

¹Faculty of Physics, University of Vienna, Wien

Filling carbon nanotubes (CNTs) with fullerenes is limited to diameters larger than 1.3 nm. We studied peapods prepared with ferrocene as filling species, which allows filling of CNTs with diameters down to 1 nm. Two different nanotube samples with mean diameters of 1.1 nm (HiPco) and 1.6 nm (DIPS) were used. Filling was done from the gas phase at elevated temperatures and in addition with supercritical CO₂. Sample analysis was done by multifrequency Raman spectroscopy and X-ray diffraction. The Raman response from the encapsulated molecule could be observed through the wall of the CNTs. In X-ray diffraction filling was concluded from a loss of diffraction intensity from the bundle peak and from the appearance of a chain peak. Raman spectroscopy and X-ray diffraction independently confirmed the encapsulation of the employed molecular species. After heat treatment of ferrocene filled HiPco tubes several high frequency Raman lines were observed in the radial breathing mode frequency range which are ascribed to the Raman response from very thin inner shell tubes with diameters down to 0.4 nm. This work was supported by the FWF project I83-N20 (ESF IMPRESS).

4

Resonant Raman spectra of graphene with point defects

Valentin Popov¹ Luc Henrard¹ Philippe Lambin¹

We calculated the Raman spectra of graphene with a mono-vacancy, a di-vacancy, and a Stone-Wales defect using a non-orthogonal tight-binding model. We found that the presence of defects modified the band structure of graphene resulting in essentially resonant Raman scattering from phonons in the visible range. We analy-

²Research Center for Advanced Carbon Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan

³ Department of Materials Science and Engineering 21st century COE (Nanofactory), Mejo University, Nagoya 468-8502, Japan

¹Facultes Universitaires Notre Dame de la Paix, Namur, Belgium

zed the characteristic Raman-active phonons and their resonance energies for each defect. In particular, the introduction of di-vacancy and Stone-Wales defects in graphene makes the Raman scattering from the G-mode resonant in the visible range. This reason for resonant enhancement should be taken into account along with other well-established mechanisms, such as double-resonance scattering.

5

Raman detection of the Kohn anomaly in the K-point derived region of the Brillouin Zone of metallic carbon nanotubes upon electrochemical doping

<u>Peter M. Rafailov</u>¹ Janina Maultzsch² Christian Thomsen² Urszula Dettlaff-Weglikowska³ Siegmar Roth³

We applied Raman spectroscopy to investigate the response to electrochemical doping of the second-order D* band in single-walled carbon nanotube (SWNT) bundles. Our study reveals a dramatic increase of the D* band sensitivity to doping upon moving the laser excitation to the red end of the visible spectrum and beyond. We interpret this phenomenon as a confirmation for the existence of a second Kohn anomaly in the K-point derived region of the Brillouin zone (BZ) of metallic SWNTs, which stems from the Kohn anomaly in the K-point of the BZ of graphene. Our results are thus comparable to those of doping experiments on graphene by means of field-effect gating, and can be used to investigate the electron-phonon coupling in the bulk of the BZ of metallic SWNTs.

6

Transition Metal Nanoparticles by Urea Decomposition and Co-Precipitation Methods for CNT Growth

 $\underline{{\rm Sandesh~Jaybhaye}^{1,2}}$ Alberto Ansaldo² Laxminarayan Singh³ Maheshwar Sharon¹ $\overline{{\rm Ermanno~Di~Zitti}^4}$ Davide Ricci²

Metal nanoparticles to be used as catalysts in bulk production of carbon nanotubes (CNTs) by chemical vapour deposition (CVD) have been prepared by a wide variety of techniques. In this work we synthesized nano-size metal catalyst powders by hydrothermally treating metal nitrates and chlorides (nickel and cobalt)

¹Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria

 $^{^2}$ Institut für Festkörperphysik, Technische Universität Berlin, Germany

³Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

 $^{^1{\}rm Nanotechnology}$ Research Center, Birla College, Kalyan, 421304, Maharashtra â India

²Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova â Italy

 $^{^3\}mathrm{Dr.Babasaheb}$ Ambedkar Technological University, Lonere, Raigad, 402 103, Maharashtra â- India

⁴Dipartimento di Ingengeri Biofisica ed Elettronica, Universitá di Genova, Via Opera Pia 11a, I-16145 Genova â Italy

with the addition of urea or sodium hydroxide followed by calcination to induce oxidation. The powders were then reduced at high temperature in hydrogen gas to get nano-size particles. The effect of precursors used and preparation methods on the crystal structure and morphology of the obtained metal nanoparticles has been investigated. The co-precipitation method performed by using metal chlorides with sodium hydroxide gave rise to nanoparticles with uniform size. On the other hand, by using metal nitrates and urea, the particles are non-uniform in size. Catalysts have been characterized by XRD and SEM. These powders were then used to grow CNTs by alcohol CVD. A discussion comparing the yield and quality of nanotubes obtained by this process depending on the catalyst preparation method is reported.

7 High speed carbon nanotube memory elements

Marcus Rinkiö¹ Andreas Johansson¹ G. Sorin Paraoanu² Päivi Törmä³

¹Nanoscience Center, Department of Physics, University of Jyväskylä, Finland

²Low Temperature Laboratory, Helsinki University of Technology, Finland

³Department of Applied Physics, Helsinki University of Technology, Finland

Single-walled carbon nanotube field-effect transistors (CNT-FETs) are demonstrated to have impressive device parameters. They are extremely fast having a transit frequency as high as 50 GHz and have high sensitivity in monitoring single-electron tunneling events between a gold particle and a nearby nanotube. These CNT-FETs display often some degree of hysteresis in their transfer characteristics. For a transistor this is an unwanted attribute but it opens up new possible applications. By utilizing this hysteresis, CNT-FETs can be used as a memory element. The insulator film between the gate and CNT has here a crucial influence on the operation of the CNT-FET. For an effective capacitive coupling between the CNT and the gate electrode, a thin and dielectrically strong film is required. On the other hand, in order to achieve the desired hysteretic behavior for memory operation, the gate-CNT coupling has to include charge traps within the gate insulator or at some interface in the system that can be filled or emptied with charges from the CNT.

Here we will present the results on a first high performance charge trap CNT memory element with operation speed below a microsecond regime.

Stable colloidal Co-Pd nanocatalysts for carbon nanotube growth

A. Berenguer¹ M. Cantoro¹ V. B. Golovko¹ S. Hofmann¹ B. F. G. Johnson¹ C. T. Wirth¹ John Robertson¹

¹Cambridge, Cambridge

The standard way to make catalysts for surface-bound growth of carbon nanotubes is to evaporate or sputter the metal catalyst (Fe, Ni, Co..) onto the surface.

A lower cost method for large areas is to use liquid delivery. Colloids have the advantage of containing the catalyst in nanocluster form. Our previously developed colloids worked, but had a limited shelf-life due to oxidation and coagulation problems. Here, we have developed an air stable Co-Pd colloidal catalyst which works and has a long shelf-life.

9

Multi-Component Catalysts for the Synthesis of SWCNT

<u>Aljoscha Roch</u>¹ Matthias Märcz² Uwe Richter¹ Andreas Leson¹ Eckhard Beyer³ Oliver Jost¹

We developed a large-scale synthesis of single-walled carbon nanotubes (SWCNT) based entirely on the electric arc evaporation method. To get the desired result, an enhanced understanding and control of the evaporation process is of crucial importance. For best results, one has to control the temperature gradient of the evaporation zone for a high evaporation density (difficult task) â or alternatively â one has to develop catalysts suitable for catalytic operation over a large temperature range. We found catalyst systems that allow both a low temperature-SWCNT-growth (200°C) as well as a high-temperature growth (1000°C). We also found a direct relation of the nanotube defect density on the choice of catalyst. In both cases multi-component catalysts offered the best results (large synthesis temperature range, low defect density, high yield).

10

Electrophysical properties of multiwalled carbon nanotubes with variable diameters

<u>A. I. Romanenko</u>¹ V. L. Kuznetsov² O. B. Anikeeva¹ T. I. Buryakov¹ E. N. Tkachev¹ K. R. Zhdanov¹ I. N. Mazov² A. N. Usoltseva²

 $^1\mathrm{Institute}$ of Inorganic Chemistry SB RAS, Novosibirsk; Novosibirsk State University

²Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State University

Multiwalled carbon nanotubes (MWNTs) were produced via CVD method. Variation of catalyst composition and reaction conditions allows to produce MWNTs with controllable and relatively narrow diameter distribution. We have investigated temperature and magnetic field dependences of conductivity of MWNTs with different mean diameter using four-point probe technique in the temperature range 4.2 K - 300 K and in the magnetic field up to 6 T. Our previous researches of powder MWNTs carried out by this method showed stability and reproduci-

¹Fraunhofer Institute for Material and Beam Technology

²University of Oslo

³Fraunhofer Institute for Material and Beam Technology, Technical University of Dresden, Departement of Surface and Manufacturing Technology

bility of results of the conductivity measurements. Only quantum corrections for interaction electrons (QCIE) in quantum corrections to magnetoconductivity take place, It was attributed to the absence of the bulk formations of amorphous carbon in MWNTs produced. From the data of QCIE we have estimated the constant of electron-electron interaction which is negative and monotonically falling with decrease of the mean diameter of MWNTs. This result is in opposite with experimental observation of superconducting state in SWNTs but in good agreement with data for MWNTs. Influence of NT defectiveness and structure on NT electrophysical properties is discussed.

11

Molecular Dynamics Simulations of Picotube Peapods

Nils Rosenkranz¹ Christian Thomsen¹

¹Institut für Festkörperphysik, Technische Universität Berlin, Berlin, Germany

Carbon picotubes are a promising starting point for the specific synthesis of nanotubes. In this context the interaction between nanotubes and picotubes is of particular interest. One potentially useful configuration evolves from inserting picotubes into a nanotube in a row in analogy to fullerene peapods. We perform temperature-dependent molecular dynamics simulations on such a system consisting of three tetramer picotubes arranged along the axis of a (9,9) nanotube. Covering a temperature range from room temperature up to 3000 K we observe two remarkable effects: First, our studies clearly show a directional transport of the tetramer molecules through the nanotube. Moreover, at sufficiently high temperatures breaking and formation of new bonds results in a structural reorganisation, which under suitable conditions might yield a second, inner nanotube of defined chirality.

12

Numerical usage of line group theory in the identification of Raman active modes in phonon spectra of single walled carbon nanotubes

Adam Rusznyak¹ Janos Koltai¹ Viktor Zólyomi² Jenő Kürti¹

Calculating the phonon spectrum of an arbitrary single walled carbon nanotube becomes cheap in numerical sense, by exploiting the screw axis symmetry. The eigenvectors of the dynamical matrix are the irreducible basis vectors of the representation of the symmetry group of the nanotubes: $\mathbf{L}\left(2n\right)_{n}/mcm$ for achiral and $\mathbf{L}q_{p}22$ for chiral tubes. We developed a numerical code that solves the eigenvalue problem of the dynamical matrix produced by a DFT code (VASP), in the helical Brillouin zone. The code represents the symmetry elements of the line group on the 3N dimensional space, where N is the number of the carbon atoms in the helical unit cell. After decomposing the matrix representation we obtain one to one cor-

¹Eötvös University (ELTE), Budapest

²Physics Department, Lancaster University, Lancester

respondence between the vibrational modes and the irreducible representations of the line group. The method allows to determine the frequencies of Raman-active and infra-active modes for any single walled carbon nanotubes.

13

Graphene flake detection with optical microscopy

Maxim G. Rybin¹ P. K. Kolmychek¹ E. D. Obraztsova² A. A. Ezhov² O. A. Svirko³

The graphene properties have already attracted the attention of scientists. The graphene flakes after their formation should be positioned onto semiconductor surface and identified with an optical microscopy for their further studies. In this work we present a modeling of the light beam passage through a three layer system "graphene-thin film-silicon"and a calculation of the graphene vision contrast dependence on the incident light wavelength. A refractive index and a thickness of the thin film were varied in this work. As a conclusion a material being transparent in a visible spectral range with the refractive index ranging from 2 to 2.2 should be chosen for the best graphene layer. From the list of appropriate materials ZnS and ZrO2 have been chosen for our experiments together with SiO2 due to their availability. The graphene flakes were prepared by the micromechanical cleavage of HOPG and were deposited on silicon substrates covered with thin films of these materials of different thickness. A good adhesion and good contrast have been achieved. The films have been studied with the atomic-force microscopy and the Raman scattering techniques.

Thanks for support RFBR-07-02-01505.

14

Rethinking carbon nanotube growth modes

Mark H. Rümmeli¹ F. Schäffel¹ G. Trotter² A. Bachmatiuk¹ D. Adebimpe³ G. Simha-Martynková⁴ D. Plancháβ⁴ B. Rellinghaus¹ D. Haberer¹ M. Knupfer¹ L. Schultz¹ B. Büchner¹

The technological possibilities harnessed by carbon nanotube (CNT) devices and materials have resulted in a worldwide anticipation of unprecedented advances in the realm of molecular electronics and smart materials; however, the true potentials of carbon nanotubes are yet to be unleashed. One of the main reasons for this is the lack of control in growing carbon nanotubes. Despite many studies centered

¹Moscow State University, Moscow

²A.M. Prokhorov General Physics Institute, Moscow

³University of Joensuu, Joensuu

 $^{^1\}mathrm{IFW}$ Dresden, Dresden

²Antaria, Australia

³Polymath Interscience LLC, MD, USA

⁴Nanotechnology Center, VŠB-Technical University of Ostrava, Czech Republic

on their synthesis, our understanding of the fundamental patterns involved in their nucleation and growth processes remain somewhat limited. In this presentation, studies of carbon nanotube growth using floating catalyst synthesis routes (laser evaporation and arc-discharge) are presented alongside chemical vapour deposition (CVD) routes using catalyst supports and gas phase prepared nanoparticles. The potential of ceramic based nanotube growth is also explored. These comparisons open up new opportunities to better understand the role of the catalyst particle since information on correlations between the initial catalyst nanoparticle and the engendered CNT are easily obtained. Data obtained on CNT nucleation and growth from the use of different supports suggests that a more stable growth process can occur from the ceramic support itself.

15 Spin Dependent Transport in ZnPc Single Layer Devices and C_{60} -ZnPc-Solar Cells

 $\underline{\rm Sebastian~Schaefer}^1$ Somaie Saremi 1 K. Fostiropoulos 2 J. Behrends 3 K. Lips 3 W. Harneit 1

¹Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

²Abt. Heterogene Materialsysteme, Helmholtz-Zentrum-Berlin, Glienicker Str. 100, 14109 Berlin, Germany

 $^3{\rm Abt.}$ Silizium-Photovoltaik, Helmholtz-Zentrum-Berlin, Kekuléstr. 5, 12489 Berlin, Germany

We investigated ZnPc single layer devices and C_{60} -ZnPc-solar cells by means of continuous wave and pulsed electrically detected magnetic resonance (EDMR). Preliminary data [1] on ITO/ZnPc/Al structures are reviewed in the context of new results on coplanar Au/ZnPc/Au devices. Both samples exhibit the same current enhancement signal, when electron spin resonance is applied to it, indicating that there is no influence from the electrodes. A detailed phase analysis reveals two components of the signal with different line width but close resonance positions. Both components are attributed to the partners of a spin-pair involved in a spin dependent transport process. The similar g-values and the positive sign of the signal components lead to the assumption, that this process is rather a hopping than a recombination as assumed in [1]. First EDMR results on C_{60} -ZnPc-solar cells reveal two signals different in sign and line width. One of them is identical to the ZnPc-signal, the origin of the second one is still unclear.

[1] S. Schaefer, S. Saremi, K. Fostiropoulos, J. Behrends, K. Lips, and W. Harneit, Phys. Stat. Sol. (b) 245, Issue 10, (2008), 2120

MODELING OF CHEMICAL PROCESSES IN THE LOW PRESSURE CAPACITI-VE RADIO FREQUENCY DISCHARGES IN A C2H2/Ar MIXTURE

I. V. Schweigert¹ D. A. Ariskin¹ A. L. Alexandrov¹

The gas discharge in hydrocarbon mixtures is widely used for carbon film growth. Noble gases like argon and neon are often used as main background gases for hydrocarbon mixtures as their presence changes morphology of diamond like carbon films and leads to fewer crystalline defects. We consider the formation of heavy hydrocarbons in a capacitive 13.56 MHz discharge operating in a mixture of C_2H_2/Ar at a gas pressure of 75 mTorr. For simulation we developed a hybrid model which combines the kinetic description for electron motion and the fluid approach for negative and positive ions transport and plasmochemical processes. We found that a significant change of plasma parameters related to injection of 5.8 % portion of acetylene in argon was observed and analyzed. We found also that the electronegativity of the mixture is about 30 %. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume. We have also found that the cluster growth does not affect the electron density and mean energy, but the densities of positive and negative ions increase.

17

Tracking down the crystallographic etching of graphene at the atomic scale

<u>Franziska Schäffel</u>¹ Jamie H. Warner² Alicja Bachmatiuk¹ Bernd Rellinghaus¹ Bernd Büchner¹ Ludwig Schultz¹ Mark H. Rümmeli¹

¹IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany

 $^2\mathrm{Department}$ of Materials, University of Oxford, Parks Road, OX1 3PH, United Kingdom

Recent research into the channeling of few layer graphene via catalytic hydrogenation using metallic catalyst nanoparticles shows that this technique is potentially a key engineering route for graphene nanoribbon fabrication with atomic precision. In this study we exploit the benefits of aberration corrected high-resolution transmission electron microscopy to gain insight to the hydrogenation process whose mechanism remains controversial to date. The etch tracks are found to be commensurate with the graphite lattice. More importantly, detailed analysis of the catalyst structure and morphology reveals that the catalyst particles at the head of an etch channel are faceted and the angles between facets are multiples of $30 {\rm \^{A}}^{\circ}$. Thus the catalyst facets are also commensurate with the graphite lattice. Structural analyses of the catalyst particles from treatments in different atmospheres unveils that carbide phases are not present during the hydrogenation process. This furthers our understanding on the underlying mechanism at an atomic level.

¹Institute of Theoretical and Applied Mechanics, Novosibirsk

Electronic properties of alkali intercalated SWCNTs

<u>Ferenc Simon</u>¹ Máté Galambos¹ Janos Koltai² Viktor Zólyomi² Ádám Rusznyák² Jenő Kürti² Rudolf Pfeiffer³ Herwig Peterlik³ Hans Kuzmany³ Thomas Pichler³
¹Institute of Physics, Technical University of Budapest, Hungary

²Department of Biological Physics, Eötvös University Budapest, Hungary

We study the electronic properties of SWCNTs intercalated with Li, Na, and K using electron spin resonance and Raman spectroscopy, and microwave conductivity. The samples are prepared by the conventional alkali evaporation method for K and in liquid ammonia solutions for Li and Na. The alkali doping level is monitored by Raman spectroscopy using the shift of the Raman G mode as it is sensitive to the transferred charges. The ESR signal, characteristic of conduction electrons develops upon the alkali intercalation. Its intensity directly measures the density of states (DOS) at the Fermi level. The experimental DOS for the highest doping level is compatible with the DOS calculated for an SWCNT assembly which establishes that the nanotube assembly behaves as a Fermi liquid.

19

Polarisation dependent colour tuning by doping of self assembled Parasexiphenyl nanostructures

Gerardo Hernandez-Sosa¹ Clemens Simbrunner¹ Helmut Sitter¹

¹Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria

Organic small molecules have been object of extensive studies in the last decade due to their promising and actual applications in optoelectronic devices. Nevertheless, critical issues for the fabrication of devices like, optimization of the emission purity and improvement of the device efficiency, represent a broad spectrum of possible improvements. A recent approach to controllably tune the colour emission of organic materials makes use of an efficient non radiative energy transfer occurring between two suitable organic molecules.

We deposited self assembled Para-sexiphenyl (PSP) crystalline nano-structures doped with alpha-sexithiophene (6T) on mica substrates. Atomic Force Microscopy shows, that the over all morphology and orientation of the nano-fibres is not affected by the incorporation of 6T, suggesting a good alignment of the 6T molecules in the PSP lattice. By room temperature photoluminescence (PL) a Foerster energy transfer between matrix and dopant was observed. Moreover, a strong dependence of the PL intensity on the polarization of the excitation suggests a good coupling of the transition dipoles of 6T and PSP and allows a colour tuning of the PL emission.

³Fakultät für Physik, Universität Wien, Austria

Temperature Dependence of Electrical Conductance in Graphene

Viera Skakalova¹ Jai Seung Yoo¹ Alan Kaiser² Siegmar Roth¹

¹Max Planck Institute for Solid State Research, Stuttgart

 2 MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, New Zealand

We measured the temperature dependence G(T) of electrical conductivity in monolayer graphene designed in the field effect transistor (FET) configuration. Instability and changes in the dependence G(T) during the heating-cooling cycles are found to be related to the mesoscopic conductance fluctuations, typically present in 2-dimensional disordered systems. The phase shift of the interfering electron waves can be tuned by the voltage applied to the gate of the FET device. We found that, as the phase coherence with heating is progressively destroyed, conductance fluctuations vanish slightly above 50 K. This explains why, in this low temperature range, significant changes of the G(T), either an increase or a decrease, are observed. At higher temperatures, the G(T) is determined by the charge density: In the vicinity of the charge neutrality point (NP), conductance increases with rising temperature; at high charge densities phonon scattering becomes dominant and conductivity decreases during heating up from 50 to 250 K. We believe that the observed conductance instability at even higher temperatures is due to the high mobility of the charge defects, enabling their redistribution.

21 Shear-stimulated formation of carbon nanotube networks in polymer matrices

Tetyana Skipa¹ Ingo Alig¹ Dirk Lellinger¹

Deutsches Kunststoff-Institut, Technische Universitaet Darmstadt, Schlossgartenstr. 6, D-64289 Darmstadt, Germany

We report on the effects of shear-induced network destruction and formation in MWNT-composite melts which were directly monitored by the time-resolved DC-conductivity measurements during steady shear. A small steady shear applied for 1 hour to a non-conductive composite with initially well-dispersed nanotubes was found to induce the insulator-to-conductor transition resulting in a conductivity increase by about 6 orders of magnitude. The shear modulus measured simultaneously decreased by a factor of 2. In the rest time after steady shear both the electrical conductivity and the shear modulus demonstrate an increase related to the re-formation of the network in a quiescent melt. For the modelling of the network formation a shear-dependent kinetic equation for the nanotube agglomeration was coupled with the effective medium approximation for insulator-to-conductor transition. The proposed model gives a good qualitative description of the shear-induced effects in MWNT-polymer melts. The interplay between the destruction

and reformation effects seems to have a fundamental origin in the polymer matrices subjected to steady shear flows.

22

Millimetre height carpet of carbon nanotubes produced by Chemical Vapor Deposition in the presence of water

 $\underline{\text{Rita Smajda}}^1$ Juan Carlos Andresen
² Arnaud Magrez² Laszlo Forro² Klara Hernadi¹

We have successfully synthesized forests of vertically aligned carbon nanotubes (CNTs) with millimetre heights by the water assisted Chemical Vapor Deposition process. The CNTs forest can be easily patterned into macroscopic organized structures with define shape. This open up new applications in nanoelectronics, switches and displays systems.

By proper tuning of the water amount, CNTs walls number and diameter as well as forests height and density are controlled. Indeed, the CNTs mechanical properties are enhanced likewise. CNTs Young moduli close to the ideal 1TPa have been measured. In addition, the growth temperature can be dramatically lowered by using catalyst made of transition metals other than Fe or binary metal alloys.

Finally, we performed parametric study in order to substantiate the role of water during the reaction and to question the hypothesis of Hata et al. [1] that water enhances the catalytic activity by etching the amorphous carbon deposited during the CVD process.

[1] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima. Science, 306, 2004, 1362.

23

Raman study of double-walled carbon nanotubes under high hydrostatic pressure

M. Grennvall¹ D. Olevik¹ R. Gaddam¹ Y. Iwasa² H. Kataura³ A. Soldatov¹

Since the development of high-yield synthesis of double-walled carbon nanotubes (DWCNTs), interest in this system has been increasing due to the superior properties of double- compared to single- and multi-walled nanotubes. In this study we use hydrostatic high pressure to probe structural stability and tune vibrational and

¹University of Szeged, Hungary

²Ecole Polytechnique Federale de Lausanne, Switzerland

¹Department of Applied Physics and Mechanical Engineering, Lulea University of Technology, SE-971 87, Lulea, Sweden

²Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

³National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8562, Japan

electronic properties of bundled DWCNTs produced by C60 peapod conversion. Raman data demonstrate DWCNT stability up to 10 GPa, the highest hydrostatic pressure in our experiment. The RBM pressure derivatives, dw/dP, of the outer tubes are several times larger than those of the inner tubes - the former act as a protective shield for the latter upon pressure application while the inner tubes provide the structural stability to the outer ones [1]. We probed the response of the metallic outer tubes to high pressure and observed a gradual decrease of the FWHM of G-(BWF) component on pressure increase, indicating weakening of the electron phonon coupling. In addition, we observed anomalous behavior of G- and RBM mode frequencies above 4-5 GPa. Possible origins of this anomaly are discussed.

[1] D. Christophilos, et al. Phys. Rev. B, 76, 113402, (2007).

24

Superconductive pumping of nanomechanical vibrations

Gustav Sonne

Department of Physics, University of Gothenburg, Gotheburg

In a recent paper (Sonne et al. PRB, 78, 144501) we demonstrate that a supercurrent can pump energy from a battery that provides a voltage bias into nanomechanical vibrations. Using a device containing a nanowire Josephson weak link as an example we showed that a nonlinear coupling between the supercurrent and a static external magnetic field leads to a Lorentz force that excites bending vibrations of the wire at resonance conditions. We also demonstrated the possibility to acheive more than one regime of stationary nonlinear vibrations and how to detect them via the associated dc Josephson current. These topics will be presented together with possible applications of such a multistable nanoelectromechanical dynamics.

25

Theoretical study of atomic and electronic structure of magnesium diboride single-wall nanotubes

<u>Pavel B. Sorokin</u>¹ Leonid A. Chernozatonskii² Boris I. Yakobson³

¹Condensed matter physics department, Siberian Federal University, 79 Svobodny av., Krasnoyarsk, 660041 Russian Federation

²Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosigina st., Moscow, 119334, Russian Federation

³Department of Mechanical Engineering Material Science and Department of Chemistry, Rice University, Houston, Texas 77251, USA

We systematically studied the energetic and the electronic structure of MgB_2 nanotubes with outer, inner and staggered configurations of magnesium atoms in the framework of the density-functional theory. It was shown that the energetic stability of MgB_2 tubes with outer and staggered magnesium layer displays minimum at certain diameters of the boron cage. We studied the influence of boron environment

on energetic stability of MgB_x nanotubes of different compositions like MgB_3 . Except narrow MgB_2 -NT with outer Mg arrangement, for which the structural tension opens the band gap, the MgB_2 nanotubes display metallic properties.

26

Characterization of On-Chip filling of CVD grown Carbon Nanotubes

C. Spudat¹ C. Meyer¹ K. Goss¹ L. Houben¹ M. Bar Sadan¹ P. Kögerler¹ C. M. Schneider¹

¹Institut für Festkörperforschung (IFF-9), Elektronische Eigenschaften, Forschungszentrum Jülich, 52425 Jülich

Because of their ballistic conductance Carbon Nanotubes (CNTs) are a promising material for electronic devices. Their transport properties can be altered by functionalization. This can be done by filling the inner hollow of CNTs with guest molecules like C_{60} . The on-chip filling is carried out in an evaporation chamber providing a dynamic vacuum and additional heating directly on TEM grids. Therefore individual CNTs can be observed during the different steps towards peapods synthesis using HRTEM measurements. But even at electron energies as low as $E_e=80\,keV$ individual CNTs and especially C_{60} molecules are destroyed during electron irradiation indicated by the collapse of sidewalls and coalescence of interior C_{60} . Therefore, we use Raman spectroscopy as a non-destructive method to characterize CNTs during peapod synthesis and correlate these measurements with our microscopic results. We compare samples grown at different temperatures using chemical vapor deposition (CVD). For bulk samples we use FT-Raman, which provides a fast and easy method, while we use confocal Raman for individual tubes, which allows localized measurements on single CNTs.

27

Fermi Level shift in C60 by interfacial interactions in bilayer structures

Philipp Stadler¹ Anna Track² U. Mujeeb³ Helmut Sitter³ Helmut Neugebauer¹ Mike G. Ramsey² N. Serdar Sariciftci¹

¹Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz, Austria

²Institute for Physics, Karl-Franzens University Graz

³Institute for Solid State Physics, Johannes Kepler University Linz

C60 and derivatives are key electron acceptor molecules for organic device applications such as field effect transistors and solar cells. In this work we concentrate on bilayer structures involving C60. We study in detail two C60 â insulator heterojuctions [1]: C60 grown on Al2O3 and C60 grown on divinyltetramethyldisiloxane-bis(benzocyclobutene) (BCB). By electrical characterization of these two metal insulator semiconductor structures a difference in the build-in field of about 0.8 V is determined. The very same structures we investigated by means of photoemission

spectroscopy. It is clearly seen from the UV photoemission spectra, that the work functions and therefore the Fermi levels of the fullerene in these two structures differ about 0.8 eV. This shift in the Fermi level corresponds to the investigated change in the build-in field, demonstrating a way to influence device characteristics by modifying electronic properties. It is demonstrated that the introduction of a BCB layer enhances the organic transistor performance [2].

[1]W. Osikowicz, M. P. de Jong and W. R. Salaneck, Adv. Mater. 19, 4213 (2007)
[2]X.-H. Zhang and B. Kippelen, Appl. Phys. Lett. 93, 133305 (2008)

28

Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes

Gary A. Steele¹ Georg Gotz¹ Leo P. Kouwenhoven¹ Kavli Institute of Nanoscience, Delft University of Technology, Delft

Carbon nanotubes (CNTs) have several unique properties that make them highly attractive for studying the coherent properties of single spins. In particular, nuclear spins, the principal source of spin decoherence in GaAs, can be completely eliminated. Furthermore, a strong spin-orbit interaction recently discovered in CNTs enables all-electrical spin manipulation, while preserving long spin relaxation and decoherence times. To study single spins using quantum dots (QDs), a single electron must be confined in a QD with highly tunable barriers. In previous studies of tunable CNT QDs, disorder has prevented devices from reaching the single-electron regime. Here, we present a new device which incorporates multiple local gates with an ultra-clean suspended CNT. Using these gates, we confine, for the first time, a single electron and a single hole in a tunable double quantum dot. Interestingly, this tunability is limited by a previously unobserved type of tunnelling, analogous

29

Self-organized critical networks with gold nanoparticle vertices and conductive $\text{Mo}_6\text{S}_{9-x}\text{I}_x$ nanowire edges

<u>Jure Strle</u>¹ Damjan Vengust¹ Dragan D. Mihailovic¹

to that in the Klein paradox of relativistic quantum mechanics.

Scale-free self-organized critical networks are known to show resistance to failure, fast signal processing and are of particular interest for nanoelectronics. They are also the basis of information processing in the brain. Self-organized criticality has been recently observed on a molecular scale in $\mathrm{Mo_6S_{9-x}I_x}$ (MoSI) and gold nanoparticle (GNP) hybrid networks.

Solution processed attachment of MoSI nanowires to GNPs was used for self-assembly of the networks, which were deposited onto mica substrate, examined by atomic force microscope and statistically analyzed. With conversion of the net-

¹Department of Complex Matter, Jozef Stefan Institute, Ljubljana

work into a simplified topological graph we were able to perform detailed analysis on a large part of the network.

We have compared distributions of lengths of individual nanowires to the lengths of the edges in the network and while the former is log-normal, the latter shows a strong power-law tail exhibiting scale invariance. This shows that the self-organized critical behaviour is not a property of the nanowire synthesis, but of their self-assembly into networks.

30

Enrichment of single (n,m)-SWNTs by combining selective polymer-wrapping and density gradient centrifugation in organic solvents

N. Stürzl¹ F. Hennrich¹ S. Lebedkin¹ M. M. Kappes²

¹Institut für Nanotechnologie (INT), Forschungszentrum Karlsruhe, Germany

Since it has not yet been possible to fabricate custom-made SWNTs with defined length, diameter, chiral angle and electronic type, the development of separation techniques is necessary for gaining homogeneous samples. We describe a procedure which allows the facile production of monochiral single wall carbon nanotube suspensions using selective dispersion with fluorenyl based polymers, followed by a density gradient centrifugation in organic solvents. Solutions containing only one (n,m) species with an enrichment up to 90 % were obtained by choosing the right combination of starting raw SWNT material, polymer, ratio of polymer to SWNTs starting concentration, solvent and centrifugation conditions. Further tailoring of the (n,m)-distribution was then carried out by performing ultracentrifugation in a density gradient of tribromotoluene as density gradient medium in chlorobenzene. Evidence was provided by optical absorbance and photoluminescence excitation spectra.

31

CARBON-SUPPORTED METAL NANOPARTICLES FOR H2 PRODUCTION

 $\frac{\rm Dangsheng~Su^1~Weiqing~Zheng^1~Jian~Zhang^1~Robert~Schl\"{o}gl^1}{^1\rm Fritz-Haber~Institut~der~MPG,~Berlin}$

Hydrogen has been extensively studied as the ultimate clean energy carrier to reduce air pollution and automobile emission. Ammonia decomposition producing COx-free hydrogen has attracted renewed interest due to its clean, sustainable and economical properties. Nano-sized Ru and Fe-Co clusters supported on carbon nanotubes (CNTs) are the most active catalysts, on which ammonia can be completely decomposed at low temperature. The graphitic structure of carbon support has been found to determine in essence the activity of metal nanoparticles. Nonetheless, the fundamental research is needed to reveal clearly the nature of reaction. Here we present our studies on the vital role of graphitic CNTs in decomposing NH3 into

²Institut für Physikalische Chemie, Universität Karlsruhe (TH), Germany

H2 and N2. The structural and surface properties of catalysts were investigated by techniques such as TEM, SEM, EELS, XRD, Raman, TPSR, and so on. The in-situ synchrotron-excited XPS measurements at a near-ambient pressure reported direct evidences on the proposed electron transfer mechanism.

Reference: 1. J. Zhang, J.-O. Müller, W.Q. Zheng, D. Wang, D.S. Su, R. Schlögl, Nano Lett. 8 (2008) 2738â2743.

32

Electrical properties of Palladium Functionalized Reduced Graphene Oxide

 $\underline{Ravi\ Shankar\ Sundaram}^1$ Cristina Gómez-Navarro 1 Kannan Balasubramanian 1 Marko Burghard 1 Klaus Kern^2

¹Max Planck Institute for Solid State Research, Stuttgart

The successful realization of applications based on nanostructures requires controllable tuning of their physical and chemical properties. Chemical modification is an attractive route to reach this task. Graphene, owing to its dimensionality, is expected to exhibit dramatic changes in its properties by its modification using appropriate chemical moieties. Here, we present the controlled modification of reduced graphene oxide layers by electrodeposition (and electroless deposition) of palladium nanoparticles and study its influence on the electrical characteristics. We further demonstrate that hydrogen sensitivity can be conferred onto individual graphene sheets by this modification process. Finally, we also show the influence of humidity on the electrical characteristics of both the modified and unmodified devices. The present work sheds further light on the physiochemical structure of chemically derived graphene which is not yet clearly understood.

33

N-doped SWCNT film synthesis using a vertical flow aerosol reactor

<u>Toma Susi</u>¹ Paola Ayala¹ Albert Nasibulin¹ Raul Arenal² Hong Lin² Annick Loiseau³ Esko Kauppinen¹

¹NMG, Department of Applied Physics, TKK, Espoo, Finland

²LEM, CNRS-ONERA, ONERA BP 72, 92322, ChÃtillon, France

With the persisting challenge of controlling the electronic properties of carbon nanotubes (CNTs), doping with atoms such as nitrogen has been proposed as one viable solution. Pursuing this objective, we have employed a method to synthesize high quality N-doped single-walled CNTs, deposited as thin films directly from the gas phase in a simple continuous process. The ferrocene/CO/ammonia system used has been modified from [1].

The morphology, nitrogen doping concentration as well as the bonding configu-

²Ecole Polytechnique Federale de Lausanne, Switzerland

³MPQ, CNRS-U. Paris VII, BP 7021, 75205, Paris, France

ration of N atoms in the carbon network have been resolved combining local and overall probes such as TEM, EELS and XPS. Some macroscopic properties of our films, such as sheet resistance have also been measured.

The work was supported by the EU (FP6 STREP project BNC-Tubes NMP4-CT-2006-03350).

[1] A.Moisala et.al, Chem. Eng. Sci. 61 (2006) 4393

34

Carbon Nanotube Gates and Schottky Barriers in Carbon Nanotube Transistors

<u>Johannes Svensson</u>¹ Yury Tarakanov² DongSu Lee³ Abdelrahim A. Sourab¹ Seung Joo Park⁴ Seung Jae Baek⁴ Jari M. Kinaret² YungWoo Park⁴ Eleanor E.B. Campbell⁵

¹Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden ²Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

³Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

⁴Department of Physics and Astronomy and Nano Systems Institute-National Core Research Center, Seoul National University, Seoul 151-747, Korea

⁵School of Chemistry, Edinburgh University, Edinburgh EH9 3JJ, Scotland

The excellent mobility and electrostatic control of semiconducting carbon nanotubes (CNTs) and the high current carrying capability of metallic CNTs can be exploited in an all CNT based field effect transistor (FET). We have developed a method using two thermal CVD steps to produce doubly gated CNTFETs with a local CNT gate and a global back gate [1]. Transfer characteristics are in good agreement with results from theoretical simulations and give an inverse subthreshold slope of S=259 mV dec $^{\hat{a}1}$ for the CNT gate and S=667 mV dec $^{\hat{a}1}$ for the back gate sweep. The minimum gate delay is $\tau=5$ ps at an $I_{on}/I_{off}=100$. Simulations show that $\tau=2$ ps can be obtained if the thickness of the Si₃N₄ gate dielectric is reduced to 5 nm.

In addition the Schottky barriers at the Pd-CNT contacts have been studied using temperature dependent electrical measurements. The barrier heights decrease with increasing diameter of the nanotubes and they are in agreement with the values expected for little or no influence of Fermi level pinning.

[1] J. Svensson et al. *Nanotechnology*, **19**, 32520, 2008

Electronic properties of carbon based nanostructures from GW calculations

Simone Taioli¹ Paolo Umari² Merlyne De Souza³

A general description of the electronic properties of model zig-zag carbon nanotubes (CNTs) and chiral-edge graphene nanoribbons using a new computational method for accelerating first-principles Green's functions calculations is presented. The electronic structures and the equilibrium geometries were obtained within the pseudopotential implementation of ab initio total energy DFT. Accurate calculations to determine quasiparticle excitations in carbon nanostructures, notably electronic band gap, are performed in the framework of the GW treatment of the self-energy. Good agreement with previous theoretical results on band gap of the (8,0) carbon nanotube at Gamma point and new model calculations on nanoribbons with edges irregularities show the potential of this method to perform accurate calculations on carbon-based systems of technological interest, otherwise difficult to address with conventional approaches. Furthermore, this technique may be used as a predictive tool of spectral properties, excited states and optical response of carbon based materials in extended systems.

36

Expansion of graphite oxide lattice due to high pressure induced water insertion.

 $\underline{A.~V.~Talyzin^1~V.~L.~Solozhenko^2~O.~O.~Kurakevych^2~T.~Szabo^3~I.~Dékány^3~A.~Kurnosov^4~V.~Dmitriev^5$

Expansion of structure upon compression is a rare phenomenon that has been observed in composite systems due to incorporation of liquid pressure transmitting media into nanopores. A new type of anomalous pressure dependence of the unit cell volume is found for graphite oxide. The interlayer spacing of graphite oxide pressurized in the presence of water continuously increases by an extraordinary 28-30 percents with a sharp maximum at 1.3-1.5 GPa [1]. The increase of unit sell volume upon pressure increase is explained by incorporation of water into the interlayer space of the graphite oxide structure. The change from an anegative at to positive compressibility at 1.4 - 1.5 GPa coincides with the solidification of liquid water

¹Institute for Scientific and Technological Research, Trento, Italy

²SISSA/DEMOCRITOS, Trieste, Italy

³Department of Electrical and Electronic Engineering, The University of Sheffield

¹Department of Physics, Umeå University, SE-901 87 Umeå, Sweden

²LPMTM-CNRS, Université Paris-Nord, 93430 Villetaneuse, France

 $^{^3{\}mbox{Department}}$ of Colloid Chemistry and Nanostructured Materials, University of Szeged, H-6720 Szeged Hungary

⁴Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany

⁵SNBL, European Synchrotron Radiation Facility, 38043 Grenoble, France

into ice VI. At the same moment, the buckled graphene layers are stretched and slightly expanded laterally. The maximum of interlayer spacing was also observed during decompression at the point of ice melting. [1] A.V. Talyzin et al, Angew. Chem. 2008, 120, 8392 â8395

37

High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Gel Electrophoresis

<u>Takeshi Tanaka</u>¹ Hehua Jin¹ Yasumitsu Miyata¹ Hiromichi Kataura²

¹Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki

²NRI, AIST, Tsukuba, Ibaraki, and and Japan Science and Technology Agency (JST), CREST, Kawaguchi, Saitama

We have developed a novel separation method of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) using agarose gel electrophoresis (1). When the SWCNTs were isolated with sodium dodecyl sulfate (SDS) and embedded in agarose gel, only the metallic SWCNTs separated from the starting gel by an electric field. After 20 min, almost all SWCNTs applied to gel electrophoresis were separated into two fractions, containing 95% semiconducting and 70% metallic nanotubes. The difference in the response to the electric field between metallic and semiconducting SWCNTs can be explained by the higher affinity of semiconducting SWCNTs to agarose than to SDS. In this presentation, we will also show the improved methods for the separation.

This study was supported by the industrial technology research grant program of the New Energy and Industrial Technology Development Organization (NEDO) of Japan. (1) T. Tanaka et al., Appl. Phys. Express 2008, 1, 114001.

38

The anomalous behaviour of the ν_1 -band of β -carotene in solution and within Photosystem I and II

<u>Norman Tschirner</u>¹ Katharina Brose¹ Matthias Schenderlein² Athina Zouni² Peter Hildebrandt² Christian Thomsen¹

One of the most important pigments in photoactice proteins like photosystem I and II in higher plants is β -carotene, which in addition to its light absorbing ability also serves a protective function within the proteins due to its abilitiy to quench chlorophyll triplet states in order to prevent the formation of highly reactive singlet oxygen.

Raman spectra and Raman excitation profiles (REPs) of β -carotene are presented and compared with Raman spectra and REPs of Photosystem I and II excited in

¹Institut für Festkörperphysik, TU Berlin, Berlin

²Institut für Physikalische Chemie, TU Berlin

the Soret region. Main focus is the vibrational ν_1 -band around 1500 cm⁻¹, which originates from the ground-state in-phase double bond C=C stretching mode of the isoprene units forming the backbone of β -carotene. The band consists of two unresolvable peaks possessing different resonance excitation profiles leading to an anomalous wavelength dependent shift of the band.

Theoretical approaches trying to explain this behavior are discussed like different Frank-Condon enhancement of the two modes due to different excited-state displacements of the vibrational modes or Duschinsky rotation, which describes intensity changes of resonance excitation profiles due to mode mixing.

39

Thermal Expansion Co-efficient of Nanotube-Metal Composites

M. Uddin¹ T. Mahmud¹ C. Wolf¹ C. Glanz¹ I. Kolaric¹ S. Roth²

Fraunhofer TEG, Stuttgart, Germany

Abstract: Thermal Expansion exhibits considerable challenges developing residual stresses in the interfaces of different materials treated at high temperatures, especially, the electrical devices often containing materials with different thermal expansion behaviour. Thermal expansion co-efficient (TEC) of different metals can be tuned by using carbon nanotubes (CNTs). Metal matrix composites (MMCs) using CNTs are fabricated by hot-press sintering method and thermal expansion co-efficient of different metals and alloys are investigated throughout wide range of temperatures (-155 \hat{A} °C to 255 \hat{A} °C). Reduction of TEC of the composite materials was observed up to 20% compared to that of pure metals. The effect of CNTs in the matrix materials and the mechanism behind the improvement are explained from the microscopic investigation of the composites.

40

Long-term adsorption of fetal bovine serum on H/O-terminated diamond studied in situ by atomic force microscopy

 $\underline{\operatorname{Egor\ Ukraintsev}^1}$ Bohuslav Rezek 1 Lenka Michalikova 1 Alex Kromka 1 Marie Kalbacova 2

¹Institute of Physics, Academy of Sciences of the Czech Republic, Prague

Diamond is an attractive material for biological systems due to its unique chemical and biological properties [M. Kalbacova et al. PSS(b) 245 (2008) 2124]. Here, we investigate adhesion of fetal bovine serum (FBS) on CVD monocrystalline diamond which has microscopically patterned regions of H- and O-termination. The diamond surfaces are processed photo-lithographically and by hydrogen (1200 W, 800 C, 10 min) and by oxygen plasma (300 W, RT, 3 min) to generate alternating

²Sineurop Nanotech GmbH, Stuttgart, Germany

²Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague

H/O-terminated patterns of 30 μm width. The samples were immersed into 15 % FBS in McCoy's 5A supporting medium and characterized by in situ atomic force microscopy (AFM) during 1 week. After one day 2-4 nm layer was formed on both H/O-terminated surfaces. After one week we observe 17 \pm 5 nm FBS layer on O-terminated surface and 35 \pm 5 nm on H-terminated surface. A protein depletion region of 2-3 μm width is observed at the boundary. Based on the above characteristics we present a model of FBS protein layers on H/O-diamond and we draw conclusions for a microscopic control of the protein-mediated adsorption and cultivation of cells in diamond-based implants and biodevices.

41

AFM induced electrostatic charging of nanocrystalline diamond on silicon

E. Verveniotis¹ J. Čermák¹ A. Kromka¹ B. Rezek¹

¹Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200 Prague

Electrostatic charging is widely used in a variety of technologies and devices. Diamond as a wide band-gap semiconductor is an interesting material for such applications (Čermák et al., Phys. Stat. Sol. A 205 (2008) 2136-2140). Here, AFM is used to induce electrostatically charged microscopic areas on nanocrystalline diamond (NCD) films of 80 nm thickness terminated by oxygen atoms. The films are deposited on silicon substrates. We study amplitude and spatial fluctuations of the stored charge as a function of AFM tip bias voltage and scan speed. For instance, we show local electrical potential differences up to -1 V using -20 V bias. We discuss contribution of diamond bulk and grain boundaries to the charging effects. We compare the results with charging of the silicon substrate itself as well.

42

High-density Arrays of Carbon Nanotube and Graphene Devices: Directed Assembly and Rapid Characterization

<u>Aravind Vijayaraghavan</u>¹ Sabine Blatt¹ Christoph Marquardt¹ Michael Engel¹ Marc Ganzhorn¹ Simone Dehm¹ Frank Hennrich¹ Ralph Krupke¹

 1 Institut für Nanotechnologie, Forschungszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany

First, I discuss the fabrication of high-density arrays of single-chirality-SWCNT [1] and graphene [1] devices. We have shown that dielectrophoresis can be used to fabricate arrays of SWCNT devices, and the process is self limiting to one nanotube per device. [2] Single-chirality SWCNT suspensions are obtained by selective polymer wrapping and density gradient ultracentrifugation. Graphene solutions are made by exfoliating graphite in aqueous and organic solvents. The yield and quality of devices from a variety of suspensions is compared. Arrays are characterized by spatial Raman and photoluminescence maps and electron transport measurements.

Next, I present Voltage-Contrast Scanning Electron Microscopy (VC SEM) as a new technique for the rapid, parallel and visual electronic characterization of SWCNT devices. VC-SEM is shown to distinguish metallic and semiconducting SWCNTs in the SEM. [3] VC-SEM is also used to characterize defects, [1] such as Stone-Wales defects, high-current breakdown, e-beam induced metal-insulator transition and charge-injection into the dielectric substrate. (1) Unpublished/Submitted (2) Nano Letters 2007, 7, 1556-1560 (3) Nano Research 2008, 1, 321-332

43

Structural properties of MoS2 "mama" – tubes and related materials

 $\underline{\text{Marko Virsek}}^1$ Matthias Krause² Andreas Kolitsch² Ales Mrzel¹ Ivan Iskra¹ Maja Remskar¹

MoS2 nanomaterials synthesized by sulphurization of MoS2I8 nanowires were studied by wavelength dependent Raman spectroscopy, XRD and HRTEM. The transformation process, determined by the reactor temperature, leads to selective morphologies of the MoS2, like coaxial nanotubes, i.e. nanotubes with split walls, "mama"-tubes, encapsulating MoS2 fullerene-like particles,[1] or other hybrid nanostructures. Temperatures above 850°C lead to formation of MoS2 "mama"âtubes, while below 850°C the growth of coaxial MoS2 nanotubes is favored. HRTEM was used to study how MoS2 layers form from outside of precursor nanowires to inside and to observe the nucleation of fullerene-like particles. Results of a possible oxidation during the Raman experiment are correlated with partially or fully oxidized Mo6S2I8 nanowires of the composition MoO3-x, which can be afterwards also sulphurized resulting in MoS2 polycrystalline nanowires. Using Raman and XRD spectroscopies we have studied effect of temperature and duration of the sulphurization process. We followed stages of the transformation to study the chemical reaction kinetics. [1] M. Remskar, A. Mrzel, M. Virsek, A. Jesih Adv. Mater. 2007, 19, 4276

44

First principles studies of carbon nanotubes growth

JinJin Wang¹ John Robertson¹

Controlling the chirality of CNTs is one of the obstacles of using them in electronic devices. It is crucial to fully understand their growth mechanism. Combining the idea of chemical vapour deposition and root growth model, we investigated the effects of different catalysts on the growth of single-walled CNTs by first principles calculations. Our first model compared different caps of the CNTs placed onto the

¹Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

²Forschungszentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, D-01314 Dresden, Germany

¹Department of Engineering, University of Cambridge, Cambridge

(111) surface of Ni, and compared their binding energies after relaxation. [1] Here we modelled various caps on the (111) surfaces of Fe, Co, Au, Mo, Ti to see the effects of other catalysts. We find that for all metal surfaces, the energy of the carbon-metal bonds for the armchair edges is 30% higher than for zigzag edges. As a more realistic model, we used a Fe nanoparticle of 55 atoms with three facets on which the caps are placed. Our results showed that the binding energy depends largely on cap diameter. Caps with diameter comparable to the facets are favoured. Facets with a pyramid tip are favoured and more stable bonds are formed.

[1] S. Reich et al. Chem. Phys. Lett. 421 (2006) 469

45

Stability and Aromatic Structure of Graphene Nanoribbons

<u>Tobias Wassmann</u>¹ Ari P. Seitsonen¹ A. Marco Saitta¹ Michele Lazzeri¹ Francesco Mauri¹

¹IMPMC, Campus Boucicaut, Université Pierre et Marie Curie, Paris, Paris

We analyze the stability, the geometry, the electronic and magnetic structure of hydrogen-terminated graphene-nanoribbons edges as a function of the hydrogen content of the environment by means of density functional theory. Antiferromagnetic zigzag ribbons are stable only at extremely-low ultra-vacuum pressures. Under more standard conditions, the most stable structures are the mono- and di-hydrogenated armchair edges and a zigzag edge reconstruction with one di- and two mono-hydrogenated sites. At high hydrogen-concentration "bulk" graphene is not stable and spontaneously breaks to form ribbons, in analogy to the spontaneous breaking of graphene into small-width nanoribbons observed experimentally in solution. The stability and the existence of exotic edge electronic-states and/or magnetism is rationalized in terms of simple concepts from organic chemistry (Clar's rule).

46

Interplay between Kondo and Josephson Effect in a Carbon Nanotube Quantum Dot

<u>Markus Weiss</u>¹ Alexander Eichler¹ Stefan Oberholzer¹ Christian Schönenberger¹ Alfredo Levy-Yeyati² Juan Carlos Cuevas² Alvaro Martin-Rodero² Richard Deblock³ Helene Bouchiat³ Christoph Karrasch⁴ Volker Meden⁴

We present detailed transport measurements on single walled Carbon nanotube quantum dots coupled to superconducting electrodes. For intermediate transpa-

¹Department of Physics, University of Basel

²Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid

³Laboratoire de Physique des Solides, Univ. Paris-Sud, Orsay

⁴Institut für Theoretische Physik A and JARA, RWTH Aachen University

rency contacts, we observe various manifestations of the Kondo effect with the electrodes in the normal state, that also affect the superconducting state. Here, we observe a striking even-odd effect, visible in the subgap structure of nonlinear transport data, with the Andreev reflexion process at $V=\Delta/e$ being strongly enhanced in charge states with odd occupation. As an explanation we suggest the formation of a one-sided Kondo resonance on the more transparent one of the two contacts

A Josephson current will get strongly modified in the presence of Kondo correlations. For for values of the Kondo temperature $T_K \leq \Delta$ the sign of the supercurrent is usually reversed, and the system is in the so called π -state. We show measurements of the Josephson current in several Kondo-states, where we can tune the Kondo-temperature with the resonant level position. This permits us to investigate the transition into the π -state, and to compare out data to recent functional renormalization group (FRG) calculations.

47

Locally Gating via Trigates on a Single Germanium Nanowire

<u>Armin C. Welker</u>¹ Maria Kolesnik¹ Justin D. Holmes² Vojislav Krstic¹ Centre for Research on Adptive Nanostructures and Nanodevices, School of Physics, Trinity College Dublin, Dublin 2, Ireland

²Chemistry department, University College Cork, Western Road, Cork, Ireland

Germanium is a well-known semiconductor from the early days of semiconductor industry. We use germanium as core element in the form of nanowires, as possible pathway for the semiconductor industry beyond the silicon era in order to fulfill Moore's law. Key-point of any electronic device is that the electrical transport properties are tuned with a nearby gate. As far as germanium nanowires are used as core element, the natural oxidation of germanium is a problem, preventing electrical contacting for charge-injection. In our contribution we make use of the germanium oxide, and turn this disadvantage into a benefit. We use this natural germanium oxide as a gate oxide, and we deposite metal trigates on a germanium nanowire. This approach should allow to tune the electrical properties locally along the Germanium nanowire. The impact of the trigate is probed by electrial transport measurements and presented in this contribution.

48

Reaction-limited growth of single-walled carbon nanotubes

<u>Tobias Wirth</u>¹ Can Zhang¹ Stephan Hofmann¹ John Robertson¹ Engineering Department, University of Cambridge, Cambridge, UK

We present a systematic study of the temperature dependence of the growth rate of vertically aligned multi-walled carbon nanotubes by thermal chemical vapor deposition of acetylene in the temperature range 560-800 °C. We use Al₂O₃-supported

Fe particles as catalyst and C_2H_2 as feedstock. Growth is performed at atmospheric pressure. We also record the growth of carbon nanotube forests by high resolution real-time optical imaging. We derive activation energies of $< 1~{\rm eV}$.

Carbon nanofibres and large diameter carbon nanotubes in PECVD are known to grow by diffusion limited growth, as their growth rate varies inversely with the catalyst droplet diameter. We also look at the pressure dependence of the growth rate of SWNTs and small diameter MWNTs in the C_2H_2 pressure (p) range of 10^{-5} to 20 mbar. We observe a \sqrt{p} dependence. Thus, we suggest that the rate limiting step for SWNT growth under purely thermal conditions is molecular dissociation at the catalyst surface.

49 Quantitative Evaluation and Control of the Diameter of Vertically Aligned SW-NTs

Rong Xiang¹ Yoichi Murakami² Erik Einarsson¹ Shigeo Maruyama¹

To quantify the diameter change along a vertically aligned single-walled carbon nanotube (SWNT) array grown by alcohol catalytic CVD, we compare three samples that followed almost the same growth curves but grew for different CVD time. By subtracting UV-Vis-NIR absorption spectra from each other, we obtain the local absorption information, which clearly show that the average diameter of SWNTs along a vertically aligned array is around 10-20% larger at the root than at the tip. The increase of diameter begins from a diminishing of signal in small diameter range and then a shift of the entire peak. From this observation, we discuss that catalyst aggregation is the main reason of the diameter increase rather than the catalyst ripening. Higher concentration of Mo is introduced into the original catalyst recipe to prevent from the aggregation of metal particles at high temperatures. As expected, the average diameter of SWNT arrays is significantly reduced. Small-diameter vertically aligned SWNTs (average diameter of 1.2 nm) have less buckling due to higher flexibility, which lowers the resistance of thermal and electric transport.

50

Origins of optical absorption components of metallic and semiconducting single-wall carbon nanotubes in ultra-violet region

<u>Kazuhiro Yanagi</u>¹ Takeshi Saito² Yasumitsu Miyata¹ Takeshi Tanaka¹ Shunjiro Fujii¹ Daisuke Nishide¹ Hiromichi Kataura¹

¹Department of Mechanical Engineering, the University of Tokyo

²Department of Chemical System Engineering, the University of Tokyo

¹Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

 $^{^2{\}rm Nanotube}$ Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

There are large absorption components in the optical absorption spectra of single-wall carbon nanotubes (SWCNTs) in the ultraviolet (UV) region (~ 5 eV). Clarification of the origins of the UV absorption is important, since the tails of the UV components influence the transparency of nanotubes and impede their uses for transparent conducting films. However, the origins have still been under discussion. Such UV absorption components are assumed to be caused by π -plasmons. However, recently contributions from π - π^* transition at the M point were also suggested. To understand the origins of UV component in detail, here we clarified how the electronic structure (metallic or semiconducting) and the diameters of SWCNTs influence the UV optical absorption features. We clearly identified two components in UV region, and revealed dependence of the components on their diameters. Remarkably, dependence of the peak-energies of one component on diameters could not be explained by plasmon model, implying the presence of different origins than plasmons in the UV absorption components.

51 Carbon Nanotube Composites Produced by Coagulation Spinning

Karen Young¹ Fiona M. Blighe¹ Jonathan N. Coleman¹

¹School of Physics / CRANN, Trinity College Dublin, Dublin 2, Ireland

Surfactant-dispersed single-walled carbon nanotubes (SWNTs) were injected into a laminar flow of aqueous polyvinyl alcohol (PVA) to produce nanotube gel fibres, which were collected in a water bath on a spindle. An extensive study was carried out to optimise the polymer-SWNT-surfactant coagulation system. Various surfactants and a large number of PVA and surfactant injection speeds were used to find the optimum spinning conditions. A range of nanotube mass-fraction fibres were produced at these optimum spinning rates and the best fibres were drawn by various amounts; their mechanical properties were investigated by tensile testing. The resulting fibres had ultimate tensile strengths of up to 1.7GPa. Water absorption and induced crystallinity effects were also investigated.

52

Synthesis of Carbon Nanotubes on Cobalt Disilicide for Horizontal Interconnect Application

 $\underline{\text{Can Zhang}^1}$ Feng Yan
¹ Daire Cott² Guo Fang Zhong¹ Bernhard Christian Bayer¹ Stephan Hofmann¹ John Robertson¹

We identified Cobalt Disilicide (CoSi2) as a new electrically conducting material that can support vertically aligned Carbon Nanotubes (CNTs) growth. Compared with other conducting catalyst support materials (e.g. TiN and TaN), AFM study shows that CoSi2 has better thermal stability under our CNT growth condition (at

¹University of Cambridge, Cambridge

²IMEC, Kapeldreef 75, B-3001, Belgium

490-650C). It is also revealed that CoSi2 supported Fe catalyst particles do not undergo observable agglomeration upon pre-growth thermal treatment under H2 flow for 15 minutes, which largely outperforms SiO2/Fe and is comparable with that of Al2O3/Fe. We further show that Single-walled CNTs (SWNTs) can be grown with CoSi2/Fe at 700C in a cold wall system, the sample shows Radial Breathing Mode peaks under Raman Spectroscopy and hence confirms the presence of significant amount of SWNTs in the CNT forest.

With a Horizontal Growth Test Structure (HGTS), which has a 20 nm self-aligned CoSi2 layer on the vertical surface of electrode, we investigated the possibility of growing horizontally aligned CNTs from Fe catalyst deposited on such a vertical surface for the purpose of horizontal interconnect application.

53 Commercial Carbon Nanotubes as Efficient Catalysts for Alkene Synthesis $\rm Jian~Zhang^1~Dang~Sheng~Su^1$

¹Department for Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin

We herein report a facile and sustainable route to synthesize the alkenes as important monomers in modern polymer industries. After simple modification, the commercial CNTs efficiently catalyze the reaction under a mild condition. Tubular structure keeps intact during the whole process (1). This study will renew scientific and technological interests on large-scale applications of CNTs. Oxidative dehydrogenation of butane is an energy-saving technology to synthesize butenes and butadiene. The development of transition metal-based catalysts has been hindered by the big challenges in both selectivity and long-term stability. By using metal-free CNTs as catalysts, we were delighted to observe a high selectivity during a continuous reaction over 100 hours. At a same conversion of butane, surface-modified CNTs are much more selective than the well-developed V-Mg-O catalysts. The metal-free mechanism is well confirmed by both in-situ characterizations and DFT calculations. The application of CNTs as a heterogeneous catalyst is attractive due to the favorable management of energy.

Reference: 1. J. Zhang, X. Liu, R. Blume, A.H. Zhang, R. Schlögl, D.S. Su, Science 322 (2008) 73â77.

54 Nanoelectromechanical quantum pumps formed of double walled carbon nanotubes

Viktor Zolyomi¹ Laszlo Oroszlany¹ Colin J. Lambert¹

Recently it was shown experimentally by the group of A. Zettl that nanomechanical devices comprised of a long stationary inner carbon nanotube and a short slowly

¹Department of Physics, Lancaster University, Lancaster

rotating outer tube can be fabricated [1]. In this work, we study the possibility of using such devices as adiabatic quantum pumps [2]. Using the recursive Green's function method (employing the Brouwer formula) we calculated the pumped charge from one end of the inner tube to the other, as driven by the rotation of the outer nanotube, studying a large number of different chiralities.

The Hamiltonian was described by the inter-molecular Hückel model, and for a few test cases by density functional theory. We have found good agreement between the two methods. Our results on the pumped charges show that there is virtually no pumping if the chiral angle of the two nanotubes is the same, as expected. We discuss which are the optimal chiralities that can be used for such quantum pumps. Furthermore, we show that charge pumping with such devices can be used to probe the strength of the inter-layer coupling between the inner and outer tube.

- [1] Nature 424, 408 (2003)
- [2] PRL 87, 236601 (2001)

55

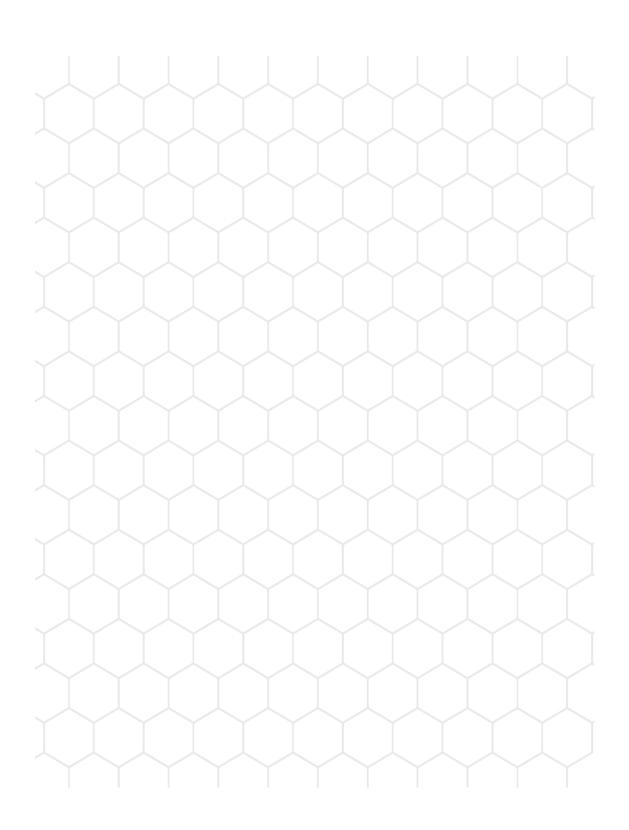
Opto-electronic performance of PPV-based heterostructures evaluated by scanning probe techniques

<u>Jan Čermák</u>¹ Bohuslav Rezek¹ Věra Cimrová² Drahomír Výprachtický² Hans-Heinrich Hörhold³ Martin Ledinský¹ Antonín Fejfar¹

¹Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Prague ²Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague

 3 Institut für Organische Chemie und Makromolekulare Chemie, Universität Jena, Jena, Germany

It is believed that the low power conversion efficiency of organic solar cells (6%) is caused by imperfections in micro-structural ordering of the heterojunction [Äermák et. al., Phys. Stat. Sol. RRL 1 (2007)]. Thus microscopic characterization of their properties is of key importance for further development. Here, organic heterojunctions are prepared by spin-coating onto ITO covered glass substrates using PPV-based conjugated polymers. Microscopic morphologies of the organic films are studied by Atomic Force Microscopy (AFM). Microscopic inhomogeneities of surface potentials (detected by Kelvin Probe Microscopy - KPM) and their different shifts under illumination indicate spatial variations of the carrier photogeneration. This is in a good agreement with the results obtained by photoinduced surface potential decay technique. Similar results are also observed by microscopic current-voltage characteristics measured via AFM tip in dark and under illumination. Micro-Raman mapping corroborates these data by revealing different degree of local phase separation. Some areas are even no more of heterostructural nature and therefore can lead to electrical shunting of the cells.


Single walled carbon nanotubes modified by PFO -â An optical absorption and Raman spectroscopic investigation

<u>Pawel Łukaszczuk</u>¹ E. Borowiak-Palen¹ M. H. Rümmeli² R. J. Kalenczuk¹ Institute of Chemical and Environment Engineering, Szczecin University of Technology, Szczecin

²Leibniz Institute for Solid State and Materials Research Dresden, Germany

In this contribution we present preliminary results on the optical absorption and resonance Raman spectroscopic investigations on singlewalled carbon nanotubes (SWCNT) functionalized by poly (9,9-dioctyfluorenyl-2,7-diyl)-co-bithiophene (PFO). A route for a stable suspension of SWCNT in a solution of fluorene-based copolymer is shown. Additionally, the detailed analysis of the supernatant and the sediment after centrifugation of the functionalized sample is given. The resonance Raman and optical absorption spectroscopic data suggest the selective wrapping of carbon nanotubes by PFO occurs. Thus, the presented functionalization route is attractive as a means to separate semiconducting and metallic SWCNT.

Transport and magnetic properties of carbon nanotubes

8:30 – 9:00	N. M. Gabor, US Highly efficient electron-hole pair generation via impact ionization in carbon nanotube p-n junction photodiodes
9:00 – 9:30	D. Loss, CH Nuclear spins in nanostructures
9:30 – 10:00	V. Siegle, DE Pumping single electrons with SWNT
10:00 – 10:30	Coffee break
10:30 – 11:00	C. Boehme, US Electrically detected coherent spin control in carbon based semiconductors
11:00 – 11:30	B. Dora, DE Electron spin resonance of Luttinger liquids and single-wall carbon nanotubes
11:30 – 12:00	V. Krstic, IE Doping of single-walled carbon nanotubes with phosphorous atoms
12:00 – 17:00	Mini Workshops
17:00 – 17:30	E. Goovaerts, BE Bile-salt solubilization offers high resolution and selectivity
17:30 – 18:00	for the spectroscopy of single-wall carbon nanotubes E. D. Obraztsova, AT Two-phonon Raman spectroscopy of one-, two-layered gra-
18:00 – 18:30	phene and carbon nanotubes T. F. Heinz, US IWEPNM09 – Conference summary
18:30 – 20:00	Break
20:00	Bauernbuffet Farewell

8:30

Highly efficient electron-hole pair generation via impact ionization in carbon nanotube p-n junction photodiodes

<u>Nathaniel M. Gabor</u>¹ Zhaohui Zhong² Ken Bosnick³ Jiwoong Park⁴ Paul McEuen¹ Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca

 $^2\mathrm{Department}$ of Electrical Engineering and Computer Science, University of Michigan

³National Institute for Nanotechnology, National Research Council of Canada

In carbon nanotubes (CNTs), the unique band structure leads to an effective fine structure constant $\alpha=e^2/(h/2\pi)v_F\sim 1$, where e is the electron charge, v_F is the Fermi velocity and h is Planckâs constant. $\alpha\sim 1$ suggests that electron and hole interactions, such as impact ionization, should be very strong in CNTs. Indeed, we observe highly efficient generation of electron-hole pairs due to impact ionization in carbon nanotube p-n junction photodiodes. To investigate optoelectronic transport properties of individual CNT devices, we scan a focused laser beam over the device at low temperature while monitoring the electronic characteristics. Optical excitation into the second subband E_{22} leads to striking photocurrent steps in reverse bias $I-V_{SD}$ characteristics at voltage intervals E_{GAP}/e . We attribute these steps to impact ionization and give evidence that E_{22} carriers efficiently ionize additional electron-hole pairs. In reverse bias, impact ionization leads to eventual avalanche breakdown, resulting in highly sensitive photon detection. Interestingly, evidence for electron-hole generation is observed even in forward bias, suggesting that CNTs may be an ideal building block for future photovoltaic technology.

9:00

Nuclear spins in nanostructures

Daniel Loss

Department of Physics, University of Basel, Switzerland

The physics of itinerant or quantum-confined electrons interacting with localized magnetic moments is central for numerous fields in condensed matter such as decoherence of spin qubits [1], nuclear magnetism [2-4], heavy fermions, or ferromagnetic semiconductors. Nuclear spins embedded in metals or semiconductors offer an ideal platform to study the interplay between strong electron correlations and magnetism of localized moments in the RKKY regime. In two dimensions the magnetic properties of the localized moments [2, 3] depend indeed crucially on electron-electron interactions. In one-dimensional (1D) systems such as single wall carbon nanotubes (SWNTs) electron correlations are even more important. For metallic (armchair) SWNT they lead to Luttinger liquid physics. Recently, SWNTs made of 13C, forming a nuclear spin lattice, have become experimentally available [5]. Motivated by this we have studied nuclear magnetism in metallic 13C SWNTs and showed that even a weak hyperfine interaction can lead to a helical magnetic order of the

⁴Department of Chemistry and Chemical Biology, Cornell University

nuclear spins coexisting with an electron density order that combines charge and spin degrees of freedom [4]. The ordered phases stabilize each other, and the critical temperature undergoes a dramatic renormalization up into the millikelyin range due to electron-electron interactions. In this new phase the electron spin susceptibility becomes anisotropic and the conductance of the SWNT drops by a universal factor of two.

- W. A. Coish and D. Loss, Chapter in vol. 5 of the Handbook of Magnetism and Advanced Magnetic Materials, Wiley; cond-mat/0606550.
- P. Simon and D. Loss, Phys. Rev. Lett. 98, 156401 (2007).
- P. Simon, B. Braunecker, and D. Loss, Phys. Rev. B 77, 045108 (2008).
- B. Braunecker, P. Simon, and D. Loss, arXiv:0808.1685.
- H. O. H. Churchill et al., arXiv:0811.3236 (2008).

9:30

Pumping single electrons with SWNT

 $\underline{\text{Viktor Siegle}^1}$ Chen-Wei Liang 1 Sergey Lotkhov 2 Bernd Kaestner 2 Hans-Werner Schumacher 2 Florian Jessen Dieter Koelle Reinhold Kleiner Siegmar Roth

The ability of controlling the electrical current with high precision is of a great interest. Ultimatively, this requires to transfer a well-defined number of electrons per each time unit. Devices generating quantized charge current – so called single electron pumps or turnstiles – are broadly used in especially metrological applications.

We present a turnstile device based on individual SWNT or thin bundles contacted by superconducting (S) leads. Using the properties of the superconducting—normal-conducting interface in this hybrid S-SWNT-S design we are able to generate quantized charge current simply by applying RF-modulation at the back gate. The number of electrons transferred in each operation cycle is set by the RF-amplitude and can be controlled down to single electron level.

10:30

Electrically detected coherent spin control in carbon based semiconductors

<u>Christoph Boehme</u>¹ Dane McCamey¹ John Lupton¹ Kipp Van Schooten¹ Manfred Walter¹ Nick Borys¹ Sang-Yun Lee¹ Seo-Young Paik¹

Carbon based materials have an intrinsically weak spin-orbit coupling which imposes spin selection rules on many electronic transitions. The spin degree of freedom

¹MPI for Solid State Research, Stuttgart

²Physikalisch-Technische Bundesanstalt, Braunschweig

³Physikalisches Institut â Experimentalphysik II, Universitaet Tuebingen

¹Department of Physics, University of Utah, Salt Lake City, Utah, USA

of electrons and nuclei can therefore play a crucial role for electronic and optical properties of these materials and these effects have been studied extensively with magnetic resonance related methods in the past.

This presentation is a review of the recently developed coherent (pulsed) electrically detected magnetic resonance spectroscopy (pEDMR). PEDMR allows the detection of coherently controlled spin-dependent electronic transitions through transient conductivity measurements. This approach provides a much greater sensitivity than conventionally detected magnetic resonance and it also allows the discrimination between paramagnetic centers which do influence conductivity and those which do not.

The presentation will review pEDMR as a method, its state of development, technical requirements and limitations, and discuss applications. Among them are spin-dependent transport in materials used for lighting (organic light emitting diodes) and photovoltaics for which these experiments help to gain an understanding.

11:00

Electron spin resonance of Luttinger liquids and single-wall carbon nanotubes

<u>Balazs Dora</u>¹ Miklos Gulacsi¹ Janos Koltai² Viktor Zolyomi² Jeno Kurti² Ferenc Simon³

A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid state of correlated metals is presented. The ESR measurables such as the signal intensity and the line-width are calculated in the framework of Luttinger liquid theory with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant temperature dependent homogeneous line-broadening which is related to the spin symmetry breaking and the electron-electron interaction. The result crosses over smoothly to the ESR of itinerant electrons in the non-interacting limit. These findings explain the absence of the long-sought ESR signal of itinerant electrons in single-wall carbon nanotubes when considering realistic experimental conditions.

¹Max-Planck-Institut fur Physik komplexer Systeme, Dresden

²Department of Biological Physics, Eotvos University, Pazmany Peter setany 1/A, 1117 Budapest, Hungary

³Budapest University of Technology and Economics, Institute of Physics and Condensed Matter Research Group of the Hungarian Academy of Sciences, H-1521, Budapest P.O.Box 91, Hungary

11:30

Doping of single-walled carbon nanotubes with phosphorous atoms

<u>Vojislav Krstić</u>¹ Thomas Wågberg² Anne M. Janssens³ Christopher P. Ewels⁴ Odile Stéphan⁴ Marianne Glerup⁵

¹Centre for Research on Adaptive Nanostructures and Nanodevices, School of Physics, Trinity College Dublin, Dublin 2, Ireland

²Department of Physics, University of Umeå, 901 87 Umeå, Sweden

³Department of Applied Physics and DIMES, Delft University of Technology,

⁴Institut des Matériaux Jean Rouxel (IMN), CNRS, Université de Nantes, BP32229, Nantes, France

⁵LPS, CNRS8502, Université Paris-Sud, Bat. 510, 91405 Orsay Cedex, France

Doping of single-walled carbon nanotubes is a powerful technological tool to tune their electronic properties and thus has a wide impact on many fields of nanotechnology. We report on the proof and impact of doping of single-walled carbon nanotubes by incorporation of phosphorous atoms into the nanotube honeycomb lattice. The electronic properties of the doped single-walled carbon nanotubes are investigated by charge-transport, nuclear magnetic resonance and electron microscopy studies and underpinned by density-functional structural modelling. The phosphorous-doped nanotubes show a significant variation in tube morphology compared to their undoped counterparts going along with a non-Luttinger liquid like behaviour of the zero-bias conductance with additional irregular step-like features. A decrease and an inversion of the nuclear-magnetic-resonance relaxation times are observed suggesting metallic nanotube growth.

17:00

Bile-salt solubilization offers high resolution and selectivity for the spectroscopy of single-wall carbon nanotubes

Etienne Goovaerts¹ Wim Wenseleers¹ Sofie Cambré¹

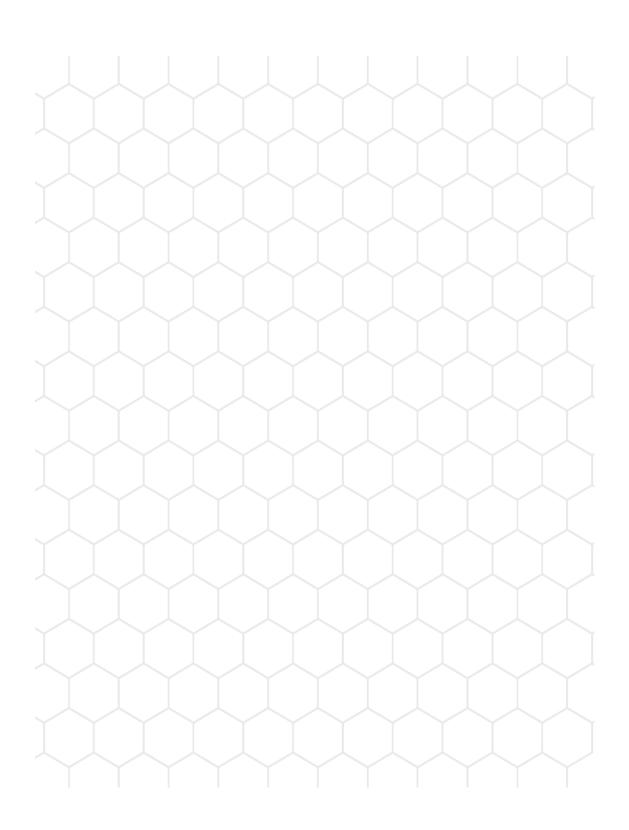
Solubilization of single wall carbon nanotubes (SWNTs) using surfactants [1] has by now become a standard preparation and characterization tool. Very high concentrations of isolated SWNTs can be obtained in aqueous solution using bile salts which also provide an only weakly disturbing environment for the nanotubes.[2] This yields major advantages in spectroscopy of SWNTs and of their nanohybrids with organic molecules. Increased resolution in Raman scattering allows for the selective detection of closed (empty) and open (filled) SWNTs by frequency shifts both of the vibrational radial breathing mode and of the electronic transition.[3] Also, nanohybrids of porphyrins adsorbed on SWNTs were studied by ESR and optical techniques, distinguishing between metallic and semiconducting tubes.[4] Quantitative techniques are proposed to determine the degree of opening of the nanotubes, and the fraction of metallic/semiconducting tubes.

¹Experimental Condensed Matter Physics, Universiteit Antwerpen, Antwerpen

[1] M.J. O'Connell, et al., Science 297 (2002), p.593; [2] W. Wenseleers, et al., Adv. Funct. Mater. 14 (2004), p.1105; [3] W. Wenseleers, et al., Adv. Mater. 19 (2007), p.2274; [4] S. Cambré, et al., ChemPhysChem 9 (2008), p.1930.


17:30

Two-phonon Raman spectroscopy of one-, two-layered graphene and carbon nanotubes


<u>Elena D. Obraztsova</u>¹ Ekaterina A. Obraztsova¹ Sofia N. Bokova¹ Alexander V. Osadchy¹ Rudolf Pfeiffer² Hans Kuzmany²


¹A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow ²Universitat Wien, Inst. fur Materialphysik, Strudlhofgasse 4, A-1090, Wien, Austria

According to calculations a number of graphene layers determine the electronic properties of graphene nanostructures being important for nanoelectronics and nanophotonics. A resonant Raman scattering (RS) is a tool being very sensitive to changes in the electronic structure. In this work we studied with RS graphene and carbon nanotubes with a small number of layers. The graphene has been produced by a micromechanical cleavage of HOPG [1]. The double-wall carbon nanotubes have been formed by a lling of arc single-wall carbon nanotubes with C60 molecules followed by a vacuum annealing at $1100 \, \circ \text{C}$ [2]. All samples have been studied first with HRTEM and atomic force microscopy. A main Raman feature under investigation was the two-phonon Raman band around 2700 cm-1. The differences in its position, shape, thermo-induced and resonant behavior for the at and curved structures with the same layer number have been revealed. The experimental results almost have coincided with the computer modeling. [1]. E. A. Obraztsova et al., Phys. Stat. Sol. B 245 (2008) 2055. [2]. R. Pfeiffer et al., Phys. Rev. B, 71(2005) 155409 (1-8). The work was supported with RFBR-07-02-01505, 07-02-91033AF

Friday, March 13 Transport and magnetic properties of carbon nanotubes

Łukaszczuk, P., 172 Artyukhov, V. I., 40 Culin, J., 48 Asanov, I. P., 114 Čermák, J., 164, **171** Atalaya, J., 41 Attaccalite, C., 30, 65, 143 Aagesen, M., 52 Avouris, P., 57 Ayala, P., 42, 42, 53, 159 Abou-Hamad, E., 39 Abrasonis, G., 96 Adebimpe, D., 149 Büchner, B., 17, 149, 151 Bényei, G., 106 Ahlskog, M., 69 Aitchison, B. A., 92 Babchenko, O., 97 Babchenko, O. B., 91 Akrap, A., 108 Babin, K. S. , 114Albu-Yaron, A., 96 Bachmatiuk, A., 42, 45, 149, 151 Alexandrov, A., 151 Algara-Siller, G., 78 Backes, C., **43** Aliev, A., 135 Bae, J. J., 94 Alig, I., 100, 153 Baek, S. J., 160 Allegrini, M., 67 Balasubramanian, K., 100, 159 Alvarez, L., 39 Ballesteros, B., 96 Ambrosch-Draxl, C., 82 Basko, D., 80 Andersson, B., 113 Batchelor, D., 18, 42 Andrei, E., 79 Baughman, R., 135 Andreopoulou, A. K., 110 Bayer, B. C., 44, 169 Andresen, J. C., 104, 154 Bednorz, M., 111 Anikeeva, O., 147 Behrends, J., 150 Bellouard, Y., 67 Anisimov, A. S. A., 92 Ansaldo, A., 40, 145 Ben-Valid, S., 91 Aono, T., 88 Berenguer, A., 146 Beyer, E., 147 Araujo, P., 126 Ardavan, A., 47 Biskupek, J., 78 Arenal, R., 101, 159 Biso, M., 44, 49 Ariskin, D., 151 Blaszczyk, A., 105 Blatt, S. , 164Arsenijevic, S., 60 Artemyev, M., 109 Blighe, F. M., 169

Index

Bockrath, M., 45 Boehme, C., 180 Boehmler, M., 126 Bokor, M., 106 Bokova, S. N., 183 Bolotin, K., 77 Bonetti, A., 80 Bonini, N., 80 Borowiak-Palen, E., 42, 45, 52, 172 Borys, N., 180 Bosak, A., 65 Bosnick, K., 179 Botka, B., 46, 91 Bottari, G., 20 Bouchiat, H., 166 Bouchiat, V., 63 Briggs, G. A. D., 17, 47, 49, 88, 89 Brocher, L., 108 Brose, K., 46, 116, 162 Broser, M., 46 Brown, D. B., 92 Brown, R. M., 47 Broz, A., 91	Cervantes-Sodi, F., 50 Chandra, B., 45, 126 Chang, H., 138 Chen, C., 77 Cheng, X. H., 89 Chernov, A., 50 Chernozatonskii, L. A., 40, 155 Chiarolini, M., 40 Choi, J., 94 Chuvilin, A., 78 Cimrová, V., 171 Ciric, L., 49, 51 , 60 Cohen, H., 62 Coleman, J. N., 169 Colli, A., 58, 93 Collins, P. G., 51 Costa, S., 52 Cott, D., 169 Crommie, M., 78 Crommie, M., 78 Crommie, M., 78 Crommie, M. F., 63 Cruz-Silva, E., 103 Csányi, G., 50
Bruinink, A., 136 Buga, S. G., 104	Csonka, S. , 52 Cuevas, J. C. , 166
Bulusheva, L., 99	D'G E 149
Bulusheva, L. G., 47 , 114	D'Souza, F., 143
Burghard, M., 64, 100, 159	Dékány, I., 161
Buryakov, T., 97, 147	Damnjanović, M., 80
Bystrzejewski, M., 42	Damnjanovic, M., 108
Caldwell, R., 45	Daothong, S., 53
Cambré, S., 48 , 182	Davis, B. G., 96
Campbell, E. E., 56, 114, 160	De-Blauwe, K., 53, 54 Deblock, R., 166
Campos-Delgado, J., 103	DeFonseca, A., 135
Canto, E. D., 110	Dehm, S., 105, 164
Cantoro, M., 93, 146	Deshpande, V. V., 45
Carroll, D., 135	Dettlaff-Weglikowska, U., 47, 54 , 145
Casimirius, S., 49 , 104	Dietzel, A., 67
Casiraghi, C., 68	Digilov, M. Y. , 55
Castagnola, E., 49	Digilov, Y., 55
Castellarin-Cudia, C., 44	Dmitriev, V., 161
Cathcart, H., 87	Dobardzic, E., 108
Cepek, C., 44	Domján, A., 106
- · · · · · · · · · · · · · · · · · · ·	- J~, ,

Doorn, S. K., 103	Fuhrer, M. S., 32
Doorslaer, S. V., 48	Fujii, S., 15, 61 , 168
Dora, B., 181	3, 7, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Duchamp, M., 49	Güttinger, J., 33
Duesberg, G. S. , 138	Gómez-Navarro, C., 159
Dunsch, L., 90, 93	Gaal, R., 60
2 4115011, 21 , 00, 00	Gabor, N. M., 179
Eichler, A., 166	Gaddam, R., 154
Eilers, S., 56	Gadermaier, C., 62
Einarsson, E., 136, 143, 168	Galambos, M., 152
Ek-Weis, J., 56	Galiotis, C., 80
Engel, M., 57 , 164	Ganzhorn, M., 164
Englert, J., 57	Garnov, S. V., 113
Enouz-Vedrenne, S., 101	Gartsman, K., 62
Ensslin, K., 33, 87	Gartstein, Y., 135
Eriksson, A., 56	Geim, A. K., 80
Erni, R., 78	Gemming, T., 42
Esconjauregui, S., 58	Georgi, C. , 126
Ewels, C. P., 182	Gillen, R., 106
Ezhov, A., 149	Giordani, S., 110
, ,	Giorghetti, C., 143
Fang, S., 135	Girit, ; 63
Farmer, J., 66	Girit, C. O., 78
Fasoli, A., 58	Glanz, C., 163
Fedorov, A. S., 59	Glerup, M., 182
Fejfar, A., 171	Goß, К., 64
Feldman, Y., 59	Gokus, T., 67, 126
Felten, A., 99	Goldbart, O., 63
Feng, Y., 15	Goldoni, A., 44
Ferrari, A. C., 50, 58, 80 , 93	Golovko, V. B., 146
Fink, J., 143	Gomez-Navarro, C., 64
Flahaut, E., 60, 99	Gonçalves, A. B., 65
Fleischer, N., 96	Goovaerts, E., 48, 182
Fleurier, R., 60	Goss, K., 156
Follath, R., 143	Gotz, G., 157
Fonseca, A., 47	Goze-Bac, C., 39
Forro, L., 49, 51, 60, 104, 108, 154	Grüneis, A., 54, 65 , 143
Fostiropoulos, K., 61, 150	Green, A. A., 57, 67
Fouquet, M., 126	Green, M. L. H., 96
Frank, O., 93	Grennvall, M., 154
Freitag, F., 52	Grunder, S., 105
Freitag, M., 57	Guimaraes, M. H. D., 65 , 66
Frey, T., 33	Gulacsi, M., 181
Fromherz, T., 111	Gupta, S., 66
, ,	• ' '

Guselnikov, A. V., 114	Isacsson, A., 41
	Iskra, I., 165
Höger, S., 89	Ito, Y., 17, 88
Hörhold, H., 171	Iwasa, Y., 154
Hübers, H., 42	Iwasiewicz-Wabnig, A., 89
Haberer, D., 149	Izumi, N., 88
Haddon, R. C., 137	,,
Halmbach, R., 143	Jacobsen, A., 87
Haluska, M., 67	Jalil, R., 80
Hambach, R., 136	Jalsovszky, I., 106
Haque, M., 135	Jang, J. H., 94
Harneit, W., 107, 150	Janssens, A. M., 182
Hartschuh, A., 67, 126	Jaybhaye, S. , 40, 145
Harutyunyan, H., 67	Jeong, G., 114
Hasler, S., 136	Jespersen, T. S., 52
Hata, K., 47	Jessen, F., 180
Hauke, F., 43, 57	Jester, S., 89
Heeg, S., 68	Jiguet, S., 108
Heinz, T. F., 77, 79 , 126	Jin, C., 15
Hellmüller, S., 33	Jin, H., 61, 162
Hennrich, F., 17, 68, 105, 158, 164	Jiricek, P., 101
Henrard, L., 144	Johansson, A., 69, 146
Hernadi, K., 154	Johnson, B. F. G., 146
Hernandez-Sosa, G. , 152	Jorio, A., 66, 103, 126, 127
Herranen, O., 69	Joselevich, E., 63
Hersam, M. C., 16 , 57, 67, 126	Jost, O., 147
Hildebrandt, P., 162	Judelewicz, M., 108
Hirsch, A., 43, 57	
Hirtschulz, M., 128	Kögerler, P., 64, 156
Hofmann, S., 44, 58, 146, 167, 169	Kürti, J., 95, 98 , 148, 152
Hofstetter, L., 52	Kaestner, B., 180
Holmes, J. D. , 167	Kaiser, A., 153
Hone, J., 45, 77 , 126	Kaiser, A. B., 90
Hong, S. Y., 96	Kaiser, U., 78
Houben, L., 156	Kalbac, M., 90 , 93
Huang, M., 77	Kalbacova, M., 91 , 163
Huczko, A., 42, 55	Kalenczuk, R., 45, 172
Huefner, M., 87	Kalenczuk, R. K., 52
Hughes, J. M., 87	Kallitsis, J. K., 110
Hulman, M., 88	Kamaras, K., 46, 91
Hurak, Z., 67	Kamra, A., 64
	Kanygin, M. A., 47
Ihn, T., 33, 87	Kaplan-Ashiri, I., 63
Iijima, S., 15, 144	Kappes, M. M., 17 , 68, 158

Karahan, B. B., 92	Kramberger, C., 18, 42, 53, 54, 116, 136 ,
Karbovnyk, I., 55	143
Karrasch, C., 166	Krasheninnikov, A. V., 88
Kaskela, A. O. K., 92	Kraus, R., 136
Kataura, H., 15, 18, 54, 61, 109, 112,	Krause, M., 96 , 165
154, 162, 168	Kreizman, R., 96
Kauppinen, E., 42, 53, 159	Krisch, M., 65
Kauppinen, E. I. K., 92	Kriza, G., 106
Kavan, L., 90, 93	Kromka, A., 91, 97 , 163, 164
Keeley, G. P., 138	Krstić, V., 182
Kepcija, N., 108	Krstic, V., 167
Kern, K., 64, 77 , 100, 159	Krupke, R., 105, 164
Khachadorian, S., 93	Kumar, S., 138
Kielbasa, J., 135	Kurakevych, O., 161
Kim, G., 94	Kurasch, S., 78
Kim, J., 138	Kurnosov, A., 161
Kim, K. K., 94	Kurti, J., 181
Kim, S. M., 94	Kutner, W., 143
Kim, Y., 39	Kuzhir, P., 97
Kinaret, J. M., 41, 160	Kuzmany, H., 116, 144, 152, 183
Kiowski, O., 17	Kuznetsov, A., 135
Kisielowski, C., 78	Kuznetsov, V., 97, 147
Kitaura, R., 42	Kvyatkovskii, O. E., 104
Kleiner, R., 180	Kysar, J., 77
Kleshch, V., 94	László, I., 95
Klingeler, R., 42	Laszlo, I., 95 Lacerda, R. G., 65
Knorr, A., 128	Lagoute, J., 101
Knupfer, M., 136, 143, 149	Lambert, C. J., 170
Koelle, D., 180	Lambin, P., 144
Kolaric, I., 163	Lange, H., 42, 98 , 109
Kolesnik, M., 167	Laszlo, I., 99
Kolitsch, A., 96, 165	Lauret, J., 60
Kolmychek, P., 149	Lavskaya, Y., 99
Koltai, J., 95 , 148, 152, 181	Lavskaya, Y. V., 47
Koltai, J. K., 98	Lazzeri, M., 31, 166
Kopnov, F., 59, 62	Lebedkin, S., 17, 158
Korbely, B., 104	Ledinský, M. , 171
Koretsune, T., 95	Lee, C., 77
Kouwenhoven, L. P., 157	Lee, D., 160
Kováts, É., 106	Lee, E. J. H., 100
Kozak, H., 97	Lee, J., 138
Kozlov, M., 135	Lee, K., 138
Kräutler, B., 116	Lee, S., 180

Loo V H 04 197	Manser, P., 136
Lee, Y. H., 94, 137	
Lellinger, D., 100 , 153	Marquardt, C., 164
Lesiak, B., 101	Marquardt, C. W., 105
Leson, A., 147	Marquis, R., 39
Levy-Yeyati, A., 166	Martin-Rodero, A., 166
Lewer, P., 61	Maruyama, S., 127 , 136, 143, 168
Liang, C., 180	Marzari, N., 80
Liebig, T., 56	Matsuishi, K., 15
Lima, M., 135	Matt, G. J., 111
Lin, H., 101 , 159	Matus, P., 106
Lips, K., 150	Maultzsch, J., 46, 106, 108, 110, 116,
Liu, Z., 18	126, 128, 145
Lo, Y., 138	Mauri, F., 31 , 166
Lobach, A., 50	Mayor, M., 105
Lobach, A. S., 113	Mazov, I., 97, 147
Loiseau, A., 60, 101, 159	Mazzoni, M. S. C., 65, 66
Lombardo, A., 58, 80	McCamey, D., 180
Loss, D., 179	McEuen, P., 179
Lotkhov, S., 180	McEvoy, N., 138
Louie, S. G., 30	Mcguirt, B., 135
Lounis, B., 128	Meden, V., 166
Lupton, J., 180	Mehring, M., 107
Lutz, T., 138	Melle-Franco, M., 116
Luzan, S., 102	Mende, J., 107
Luzzi, D., 39	Mete, T., 61
Lyon, S. A., 47	Meunier, S., 39
	Meyer, C., 64, 156
Märcz, M., 147	Meyer, J. C., 78
Möller, W., 96	Michalikova, L., 163
Müller, K., 111	Michel, K. H., 107
Müller, M., 110	Michel, T., 39
Maciel, I., 39	Mickel, C., 42
Maciel, I. O., 103	Mihailovic, D., 62
Mafra, D. L., 66, 103	Mihailovic, D. D., 157
Magrez, A., 49, 51, 60, 104 , 108, 154	Milosević, I., 80
Mahmud, T., 163	Milosevic, I., 108
Makarova, T. L., 104	Minari, T., 61
Maksimenko, S., 97	Mionic, M. M., 108
Maksimenko, S. A., 82	Miyadera, T., 61
Malard, L., 66	Miyata, Y., 15, 61, 109 , 112, 162, 168
Malard, L. M., 103	Mohiuddin, T. M. G., 80
Malic, E., 128	Mohr, M., 106, 108, 109
Malysheva, L., 115	Molitor, F., 33, 87
Maniwa, Y., 15, 109	Molodtsov, S., 143
, , ,	, ,

Index

Morton, J. J. L., 47, 88	Oroszlany, L. , 170
Moseenkov, S., 97	Osadchy, A. V., 183
Moshammer, K., 68	
Movia, D. , 110	Paik, S., 180
Mrzel, A., 165	Papagelis, K., 110
Mujeeb, U., 156	Paraoanu, G. S., 146
Murakami, Y., 168	Parjanne, J., 53
Muralikiran, M., 66	Park, H. J., 92, 115
	Park, H. K., 94
Naaman, O., 63	Park, J., 135, 179
Nafradi, B., 51	Park, J. S., 125
Nagapriya, K. S., 63	Park, S. J., 160
Nair, R. R., 80	Park, Y., 160
Naitoh, Y., 61	Park, Y. W. , 20
Nasibulin, A., 159	Pefkianakis, E. K., 110
Nasibulin, A. G. N., 92	Peica, N., 116
Naydenov, B., 107	Pekker, S., 98, 106
Neto, A. H. C., 103	Perebeinos, V., 125
Neugebauer, H., 111 , 156	Peterlik, H., 144, 152
Neves, B. R. A., 65	Petterson, M., 69
Nilsson, J., 103	Pfeiffer, R., 116 , 144, 152, 183
Nishide, D., 15, 112 , 168	Pichler, T., 18, 42, 53, 54, 65, 136, 143 ,
Nitze, F., 113	152
Novikov, D., 45	Pieta, P., 143
Novoselov, K., 29	Pimenta, M., 39
Novoselov, K. S., 80	Pimenta, M. A., 103
Novotny, L., 126	Pioda, A., 87
Nygard, J., 52	Piscanec, S., 50
01 1 1 0 400	Plancháß, D., 149
Oberholzer, S., 166	Plank, W., 54, 144
Obraztsov, A., 94	Popov, A. I., 55
Obraztsov, P. A., 113	Popov, V., 144
Obraztsova, E., 50, 94, 149	Popovitz-Biro, R., 62, 96
Obraztsova, E. A., 183	Porfyrakis, K., 47, 89
Obraztsova, E. D., 113, 183	Prylutska, S. , 19
Oh, J., 135	
Okimoto, H., 88	Qian, H., 126
Okotrub, A., 99	Dul
Okotrub, A. A., 47	Röhrig, S., 116
Okotrub, A. V., 114	Rüdiger, A., 116
Olariu, A., 51	Rümmeli, M., 17, 42, 45, 49, 52, 149 ,
Olevik, D., 154	151, 172
Olofsson, N., 56, 114	Rabe, J. P., 56
Onipko, A. I., 115	Rafailov, P. M., 145

Index

D 11 C 150	G + 17 105
Ramsey, M. G., 156	Sato, K., 125
Reich, S., 68, 128	Sato, N., 54
Reining, L., 136, 143	Sauvajol, J., 39
Reiss, L., 91	Savchyn, V., 55
Rellinghaus, B., 149, 151	Savini, G., 80
Remškar, M., 96	Schäffel, F., 149, 151
Remskar, M., 165	Schönenberger, C., 166
Rezek, B., 163, 164, 171	Schaefer, S., 150
Rezek, B. R., 97	Schaeffel, F., 42
Ricci, D., 40, 44, 49, 145	Scharff, P., 19
Richert, C., 111	Scheel, H., 93
Richter, U., 147	Scheibe, B., 52
Righi, A., 39	Schenderlein, M., 162
Rinkiö, M., 146	Schindler, W., 61
Rintala, J., 69	Schlögl, R., 158
Ritter, U., 19	Schmidt, C. D., 43, 57
Robertson, J., 44, 58, 146, 165, 167, 169	Schneider, C. M., 64, 156
Robles, R., 135	Schnez, S., 33
Roch, A., 147	Schoenenberger, C., 52
Romanenko, A., 97	Schooten, K. V., 180
Romanenko, A. I., 147	Schultz, L., 149, 151
Rontani, M., 34	Schumacher, H., 180
Rosenblatt, S., 77	Schuster, R., 136, 143
Rosenkranz, N., 148	Schweigert, I., 151
Rossell, M. D., 78	Scuttler, A., 66
Roth, F., 136	Seifert, G., 63
Roth, S., 20, 54, 88, 92, 115, 145, 153,	Seitsonen, A. P., 31, 166
163, 180	Seo, J. W., 104
Rousset, S., 101	Serrano, J., 65
Rubio, A., 39, 65, 143	Shabelina, N., 89
Rusznyák, Á. , 95, 152	Sharon, M., 145
Rusznyak, A., 148	Shelankov, A. L., 104
Rybin, M. G. , 149	Sheng, P., 129
	Shinohara, H., 17, 42, 49, 88
Sadan, M. B., 156	Shiozawa, H., 18 , 42
Sadreev, A. F., 59	Siddiqi, I., 63
Saito, R., 65, 125 , 129	Siegle, V., 180
Saito, S., 16 , 95	Sienkiewicz, A., 51
Saito, T., 144, 168	Silva, S. R. P., 18
Saitta, A. M., 31, 166	Simbrunner, C., 152
Salacan, N., 96	Simha-Martynková, G. , 149
Saremi, S., 150	Simon, F., 152 , 181
Sariciftci, N. S., 111, 156	Singh, L., 145
Sasaki, K., 125	Singjai, P., 53

Sitter, H., 152, 156 Skakalova, V., 88, 90, 115, 153 Skipa, T., 100, 153 Skipa, T., 100, 153 Slepyan, G. Y., 82 Sloan, J., 96 Smallda, R., 104, 154 Smallda, R., 104, 154 Smallda, R., 104, 154 Smallda, R., 104, 154 Soldatov, A., 154 Solozhenko, V., 161 Solozhenko, V., 161 Sonne, G., 155 Sorokin, P. B., 155 Sorokin, P. B., 155 Sorokin, P. B., 155 Sorokin, P. B., 160 Stürza, M. D., 161 Spudat, C., 64, 156 Stürzl, N., 17, 158 Stéphan, O., 182 Stadler, P., 156 Stampfer, C., 87 Steele, G. A., 157 Steele, G. A., 110 Steiner, M., 57 Stephan, O., 101 Steplewska, A., 45 Stobinski, L., 101 Steplewska, A., 45 Stobinski, L., 101 Stormer, H., 77 Strie, J., 1, 157 Sun, D., 158 Su, D., 158 Su, D., 158 Su, D., 159 Sundqvist, B., 89 Sundqvist, B., 89 Sundry, P., 113 Szabo, T., 146 Taioli, S., 161 Taioli, S., 161 Taioli, S., 161 Taioli, S., 161 Talzin, A., 102, 161 Wagberg, T., 182 Wagberg, T., 182 Wagberg, T., 39, 113 Waner, M., 180 Wang, J., 165	Sirotkin, A. A., 113	Tanaka, T., 15, 61, 112, 162 , 168
Skakalova, V., 88, 90, 115, 153 Skipa, T., 100, 153 Skipa, T., 100, 153 Slepyan, G. Y., 82 Sloan, J., 96 Terrones, H., 103 Smajda, R., 104, 154 Small, J. P., 57 So, H., 138 Soldatov, A., 154 Solozhenko, V., 161 Some, G., 155 Sorokin, P. B., 155 Sorokin, P. B., 160 Spudat, C., 64, 156 Stürzl, N., 17, 158 Stampfer, C., 87 Steele, G. A., 157 Stephan, O., 101 Stephewska, A., 45 Stobinski, L., 101 Stephewska, A., 45 Stobinski, L., 101 Stephewska, A., 45 Stome, H., 103 Terrones, M., 103 Thomsen, C., 93, 98, 106, 108–110, 116, 126, 145, 148, 162 Tkachev, E., 147 Tobias, G., 96 Tobler, U., 136 Torres, T., 20 Track, A., 156 Trotter, G., 149 Trotter, G., 149 Trysyshkin, A. M., 47 Stadler, P., 156 Stumpfer, C., 87 Steele, G. A., 157 Stephan, O., 101 Stephewska, A., 45 Stobinski, L., 101 Stephewska, A., 45 Stobinski, L., 101 Stephewska, A., 45 Stobinski, L., 101 Stephewska, A., 45 Stomer, H., 77 Vengust, D., 62, 157 Venukadasula, G. M., 143 Verberck, B., 107 Verveniotis, E., 164 Vijayaraghavan, A., 164 Vijayara		
Skipa, T., 100, 153 Telg, H., 126 Slepyan, G. Y., 82 Tenne, R., 59, 62, 63, 96 Sloan, J., 96 Terrones, M., 103 Smajda, R., 104, 154 Terrones, M., 103 Small, J. P., 57 Thomsen, C., 93, 98, 106, 108-110, 116, 126, 145, 148, 162 Soldatov, A., 154 Tkachev, E., 147 Solodzhenko, V., 161 Tobias, G., 96 Sorne, G., 155 Tobler, U., 136 Sorokin, P. B., 155 Torres, T., 20 Sourab, A. A., 160 Track, A., 156 Souza, M. D., 161 Trotter, G., 149 Spudat, C., 64, 156 Tschirner, N., 162 Stéphan, O., 182 Tsukagoshi, K., 61 Stéphan, O., 182 Tsukagoshi, K., 61 Stealer, P., 156 Tsukagoshi, M., 163 Steele, G. A., 157 Umari, P., 161 Stefopoulos, A. A., 110 Usoltseva, A., 97, 147 Steiner, M., 57 Výprachtický, D., 171 Steplewska, A., 45 Valkeapaa, M., 53 Stobinski, L., 101 Vanceck, M., 97 Su, D. S., 170 Verberck, B., 107 Su, D. S., 170 Verberck, B., 107 Sundaram, R. S., 159		
Slepyan, G. Y. , 82 Sloan, J. , 96 Sloan, J. , 96 Smajda, R. , 104, 154 Small, J. P. , 57 So, H. , 138 Soldatov, A. , 154 Solozhenko, V. , 161 Sonne, G. , 155 Sorkin, P. B. , 155 Sorkin, P. B. , 160 Sourab, A. A. , 160 Sourab, A. A. , 160 Strizel, N. , 17, 158 Stéphan, O. , 182 Stadler, P. , 156 Stampfer, C. , 87 Steele, G. A. , 157 Steele, G. A. , 457 Stephan, O. , 101 Steplewska, A. , 45 Stobinski, L. , 101 Steplewska, A. , 45 Stobinski, L. , 101 Steplewska, A. , 45 Su, D. , 158 Su, D. S. , 170 Su, D. S. , 170 Su, D. S. , 170 Sunday, R. S. , 159 Sundqvist, B. , 89 Suis, T. , 159 Svirko, Y. P. , 113 Szabo, T. , 161 Wågberg, T. , 182 Wägberg, T. , 182 Wägberg, T. , 182 Wägberg, T. , 182 Wägberg, T. , 39, 113 Walter, M. , 180		
Sloan, J., 96 Smajda, R., 104, 154 Small, J. P., 57 So, H., 138 Soldatov, A., 154 Solozhenko, V., 161 Sorokin, P. B., 155 Sorokin, P. B., 155 Sourab, A. A., 160 Souza, M. D., 161 Spudat, C., 64, 156 Stürzl, N., 17, 158 Stéphan, O., 182 Stadler, P., 156 Stampfer, C., 87 Steele, G. A., 157 Stephan, O., 101 Steplewska, A., 45 Stobinski, L., 101 Steplewska, A., 45 Stobinski, L., 101 Stormer, H., 77 Str., J., 157 Su, D., 158 Su, D. S., 170 Sunaga, K., 15, 18 Suga, H., 61 Sundaram, R. S., 159 Sund, N., 160 Smajda, R., 104, 154 Törmä, P., 146 Taolii, S., 161 Wägberg, T., 182 Walter, M., 163 Terrones, M., 103 Terrones, M., 104 Terrones, M., 104 Tkachev, C., 93, 98, 106, 108–110, 116, 126, 148, 162 Törmä, P., 146 Taolii, S., 161 Terrones, M., 103 Tracre, A., 103 Thomsen, C., 93, 98, 106, 108–110, 116, 126, 148, 162 Tornes, M., 104 Terrones, M., 103 Tracrenes, M., 103 Track, A., 156 Tornes, M., 156 Trothe, L., 136 Tornes, M., 104 Terrones, M., 105 Track, A., 156 Trothe, L., 148 Terrones, M., 104 Terrones, M., 103 Terrones, M., 103 Thomsen, C., 93, 98, 106, 108, 104, 144 Terrones, M., 104 Terrones, M., 103 Thomsen, C., 93, 98, 106, 106, 106, 108, 106 Thomsen, C., 93, 98, 106, 106, 106, 107 Track, A., 156 Trothes, L., 104 Terrones, M., 104 Terrones, M., 105 Track, A., 156 Trothes, L., 104 Trothes, L., 104 Terrones, M., 105 Track, A., 156 Trothes, L., 104 Terrones, M., 105 Track, A., 156 Trothes, L., 104 Trothes, L., 104 Terrones, M., 105 Track, A., 156 Trothes, L., 148 Terrones, M., 104 Terrones, M., 105 Track, A., 156 Trothes, L., 147 Thomsen, C., 149 Trothes, L., 148 Terrones, M., 161 Trothes, L., 148 Terrones, M., 161 Trothes, L., 148 Terrones, M., 161 Thomsen, C., 149 Trothes, L., 148 Terrones, M., 154 Tkachev, L., 147 Thomsen, C., 149 Trothes, L., 146 Tothes, L., 148 Terrones, M., 156 Trother, L., 148 Terrones, M., 156 Trother, L., 148 Terrones, M., 161 Thothes, 148 Terrones, M., 165 Tother, 148 Terrones, M., 156 Toble, 145 Terro		
Smajda, R. , 104, 154 Small, J. P. , 57 So, H. , 138 Soldatov, A. , 154 Solozhenko, V. , 161 Sonne, G. , 155 Sorokin, P. B. , 155 Sorokin, P. B. , 155 Sorokin, P. B. , 161 Spudat, C. , 64, 156 Stizzl, N. , 17, 158 Stéphan, O. , 182 Stampfer, C. , 87 Steele, G. A. , 157 Stephan, O. , 101 Steiner, M. , 57 Stephan, O. , 101 Steiner, M. , 57 Stephan, O. , 101 Steiner, M. , 57 Stobinski, L. , 101 Stormer, H. , 77 Strle, J. , 157 Strle, J. , 158 Su, D. S. , 170 Suenaga, K. , 15, 18 Suga, H. , 61 Suday, R. , 159 Sundayist, B. , 89 Suir, T. , 159 Svensson, J. , 160 Trornes, M. , 103 Thomsen, C. , 93, 98, 106, 108–110, 116, 126, 145, 148, 162 Tomae, M. , 103 Thomsen, C. , 93, 98, 106, 108–110, 116, 126, 145, 148, 162 Tomes, M. , 164 Tlother, C. , 93, 98, 106, 108–110, 116, 126, 145, 148, 162 Tomes, M. , 164 Tlother, C. , 93, 98, 106, 108–110, 116, 126, 145, 148, 162 Stele, H. , 16 Tomes, M. , 103 Thomsen, C. , 93, 98, 106, 108–110, 116, 126, 145, 148, 162 Stele, 145, 148, 162 Stobies, C. , 96 Tomes, M. , 162 Tomae, M. , 154 Tomae, M. , 161 Valan, A. , 62 Virsek, M. , 96 Virsek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Sundaram, R. S. , 159 Volkov, A. P. , 104 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Wågberg, T. , 182 Törmä, P. , 146 Taioli, S. , 161 Wågberg, T. , 180		
Small, J. P., 57 So, H., 138 Soldatov, A., 154 Soldatov, A., 154 Solozhenko, V., 161 Sonne, G., 155 Sorokin, P. B., 155 Sorokin, P. B., 155 Sorokin, P. B., 161 Souza, M. D., 161 Spudat, C., 64, 156 Stürzl, N., 17, 158 Stéphan, O., 182 Stampfer, C., 87 Steele, G. A., 157 Stephan, O., 101 Steipewska, A., 45 Stobinski, L., 101 Steplewska, A., 45 Stobinski, L., 101 Stormer, H., 77 Strle, J., 157 Sture, J., 158 Suga, H., 61 Suga, H., 6		
So, H. , 138		
Soldatov, A., 154 Solozhenko, V., 161 Solozhenko, V., 161 Sorokin, P. B., 155 Sorokin, P. B., 155 Sorokin, P. B., 155 Soroka, A. A., 160 Souza, M. D., 161 Spudat, C., 64, 156 Stirzl, N., 17, 158 Stéphan, O., 182 Stampfer, C., 87 Steele, G. A., 157 Steele, G. A., 157 Stephan, O., 101 Steplewska, A., 45 Stephan, O., 101 Steplewska, A., 45 Stobinski, L., 101 Steplewska, A., 45 Stobinski, L., 101 Steplewska, A., 45 Su, D. S., 170 Suenaga, K., 15, 18 Suga, H., 61 Suga, H., 61 Suga, H., 61 Suga, H., 61 Suga, R., 159 Sundayam, R. S., 159 Sundayam, R. S., 159 Suriko, Y. P., 113 Syabo, T., 161 Wågberg, T., 182 Wågberg, T., 182 Väfer, M., 180 Wälter, M., 180 Walter, M., 180 Walter, M., 180 Walter, M., 180		
Solozhenko, V., 161 Sonne, G., 155 Sorokin, P. B., 155 Sorokin, P. B., 155 Sorokin, P. B., 160 Sourab, A. A., 160 Sourab, A. A., 160 Sourab, A. A., 161 Trotter, G., 149 Spudat, C., 64, 156 Stürzl, N., 17, 158 Stéphan, O., 182 Stampfer, ; 33 Stampfer, C., 87 Steele, G. A., 157 Steele, G. A., 157 Stephan, O., 101 Stephewska, A., 45 Stephan, O., 101 Stephewska, A., 45 Stobinski, L., 101 Stephewska, A., 45 Stobinski, L., 101 Stormer, H., 77 Stromer, H., 77 Stromer, H., 77 Stromer, H., 77 Sun, D., 158 Sun, D. S., 170 Sundaram, R. S., 159 Sundaram, R. S., 159 Sundaram, R. S., 159 Sundaram, R. S., 160 Svirko, O., 149 Svirko, Y. P., 113 Syaber, M., 180 Valkeap, T., 182 Vägberg, T., 182 Vägberg, T., 182 Vägberg, T., 182 Vägberg, T., 139 Vägberg, T., 139 Välker, M., 180		
Sonne, G. , 155 Sorokin, P. B. , 156 Souza, M. D. , 161 Spudat, C. , 64, 156 Spudat, C. , 64, 156 Stürzl, N. , 17, 158 Stéphan, O. , 182 Stéphan, O. , 182 Stadler, P. , 156 Stampfer, ; 33 Uddin, M. , 163 Stampfer, ; 37 Uwari, P. , 161 Usoltseva, A. , 97, 147 Steele, G. A. , 157 Steele, G. A. , 110 Steiner, M. , 57 Stephan, O. , 101 Steiner, M. , 57 Stephan, O. , 101 Vyprachtický, D. , 171 Steplewska, A. , 45 Valkeapaa, M. , 53 Stobinski, L. , 101 Vanecek, M. , 97 Stormer, H. , 77 Vengust, D. , 62, 157 Strle, J. , 157 Venukadasula, G. M. , 143 Su, D. , 158 Verberck, B. , 107 Verveniotis, E. , 164 Suga, H. , 61 Vilan, A. , 62 Sundaram, R. S. , 159 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vyalikh, D. , 143 Svirko, O. , 149 Svirko, O. , 149 Svirko, Y. P. , 113 Szabo, T. , 161 Wågberg, T. , 182 Vägberg, T. , 39, 113 Törmä, P. , 146 Wågberg, T. , 39, 113 Walter, M. , 180		
Sorokin, P. B. , 155 Sourab, A. A. , 160 Souza, M. D. , 161 Spudat, C. , 64, 156 Stürzl, N. , 17, 158 Stéphan, O. , 182 Stampfer, ; 33 Stampfer, C. , 87 Steele, G. A. , 157 Stephan, O. , 101 Steplewska, A. , 45 Stobinski, L. , 101 Steplewska, A. , 45 Stobinski, L. , 101 Stormer, H. , 77 Strne, J. , 157 Sun, D. , 158 Sun, D. S. , 170 Sundaram, R. S. , 159 Sundaram, R. S. , 159 Sundaram, R. S. , 160 Svirko, O. , 149 Svirko, Y. P. , 113 Syaber, M. D. , 161 Wågberg, T. , 182 Wågberg, T. , 180 Sitiple Stirzle, M. , 163 Stroner, H. , 76 Sundaram, P. , 146 Sundaram, P. , 148 Sundaram, P. , 149 Sundaram, P. , 149 Sundaram, P. , 149 Sundaram, P.		
Sourab, A. A., 160 Souza, M. D., 161 Spudat, C., 64, 156 Stürzl, N., 17, 158 Stéphan, O., 182 Stampfer, S., 33 Stampfer, C., 87 Stele, G. A., 157 Stefopoulos, A. A., 110 Steplewska, A., 45 Stobinski, L., 101 Stormer, H., 77 Strel, J., 157 Strel, J., 158 Su, D. S., 170 Su, D. S., 170 Sundqvist, B., 89 Susi, T., 159 Sunds, A. A., 160 Stürzl, N., 171 Stele, Sting P., 146 Sundaram, R. S., 159 Sunk, C., 161 Sundaram, P., 113 Szabo, T., 161 Wågberg, T., 182 Wågberg, T., 182 Wägberg, T., 39, 113 Walter, M., 180		
Souza, M. D., 161 Spudat, C., 64, 156 Stürzl, N., 17, 158 Stéphan, O., 182 Stampfer, P., 156 Stampfer, C., 87 Steele, G. A., 157 Stephan, O., 101 Steiner, M., 57 Stephan, O., 101 Steiner, M., 57 Stephan, O., 101 Steplewska, A., 45 Stobinski, L., 101 Stormer, H., 77 Strle, J., 157 Sun, D., 158 Su, D. S., 170 Suenaga, K., 15, 18 Suga, H., 61 Sundaram, R. S., 159 Sundqvist, B., 89 Suisi, T., 159 Svirko, O., 149 Svirko, O., 146 Svägberg, T., 182 Välkeapa, M., 180 Trotter, G., 149 Tschirner, N., 162 Tschirner, N., 162 Tsukagoshi, K., 61 Vladin, M., 463 Uddin, M., 163 Uwanit, P., 161 Usoltseva, A., 97, 147 Usoltseva, A., 97, 147 Valkeapaa, M., 53 Valkeapaa, M., 53 Valkeapaa, M., 53 Valkeapaa, M., 97 Vengust, D., 62, 157 Venukadasula, G. M., 143 Verberck, B., 107 Verveniotis, E., 164 Vilan, A., 62 Viršek, M., 96 Viršek, M., 96 Viršek, M., 96 Viršek, M., 165 Susi, T., 159 Volkov, A. P., 104 Vyalikh, D., 143 Vyalikh, D., 143 Vyalikh, D. V., 65 Törmä, P., 146 Wågberg, T., 182 Törmä, P., 146 Wägberg, T., 39, 113 Walter, M., 180		
Spudat, C. , 64, 156 Stürzl, N. , 17, 158 Stéphan, O. , 182 Stadler, P. , 156 Stampfer, ; 33 Uddin, M. , 163 Steele, G. A. , 157 Stephan, O. , 101 Stephan, O. , 101 Steplewska, A. , 45 Stobinski, L. , 101 Stero, J. , 157 Strel, J. , 157 Strel, J. , 157 Sun, D. , 158 Sundaram, R. S. , 159 Sundaram, R. S. , 159 Sundqvist, B. , 89 Svirko, O. , 149 Svirko, V. , 146 Sviagh, P. , 146 Tsukagoshi, K. , 61 Tyryshkin, A. M. , 47 Studin, M. , 47 Studin, M. , 47 Studin, M. , 163 Uddin, M. , 163 Uddin, M. , 163 Uvalin, M. , 163 Uvalin, P. , 161 Usoltseva, A. , 97, 147 Usoltseva, A. , 97, 147 Vunkadasula, G. M. , 171 Valkeapaa, M. , 53 Vanecek, M. , 97 Venukadasula, G. M. , 143 Verberck, B. , 107 Verveniotis, E. , 164 Vilan, A. , 62 Virsek, M. , 96 Virsek, M. , 96 Virsek, M. , 96 Virsek, M. , 165 Vilan, A. , 62 Virsek, M. , 165 Virse, M. , 165 Virse, M. , 165 Virse, M. , 165 Virse, M. , 143 Vyalikh, D. , 143 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Vågberg, T. , 182 Vågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		
Stürzl, N. , 17, 158 Tsukagoshi, K. , 61 Stéphan, O. , 182 Tyryshkin, A. M. , 47 Stadler, P. , 156 Uddin, M. , 163 Stampfer, C. , 87 Ukraintsev, E. , 163 Steele, G. A. , 157 Umari, P. , 161 Stefopoulos, A. A. , 110 Usoltseva, A. , 97, 147 Steiner, M. , 57 Výprachtický, D. , 171 Stephan, O. , 101 Výprachtický, D. , 171 Steplewska, A. , 45 Valkeapaa, M. , 53 Stobinski, L. , 101 Vanecek, M. , 97 Stormer, H. , 77 Vengust, D. , 62, 157 Strle, J. , 157 Venukadasula, G. M. , 143 Su, D. , 158 Verberck, B. , 107 Su, D. S. , 170 Verveniotis, E. , 164 Suenaga, K. , 15, 18 Vijayaraghavan, A. , 164 Suga, H. , 61 Vilan, A. , 62 Sundqvist, B. , 89 Virsek, M. , 165 Susit, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. V. , 65 Svabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		
Stéphan, O. , 182 Stadler, P. , 156 Stampfer, ; 33 Stampfer, C. , 87 Steele, G. A. , 157 Stefopoulos, A. A. , 110 Stephan, O. , 101 Valkeapaa, M. , 97 Vengust, O. , 62, 157 Vengust, D. , 161 Vilan, A. , 62 Virsek, M. , 164 Vilan, A. , 62 Virsek, M. , 165 Virsek, M. , 164 Virsek, M. , 165 Virsek, M. , 164 Virsek, M. , 164 Virsek, M. , 164 Virsek, M. , 165 Virsek, M. , 164 Virsek, M. , 165 Virs		
Stadler, P. , 156 Stampfer, ; 33 Stampfer, C. , 87 Ukraintsev, E. , 163 Ukraintsev, E. , 163 Ukraintsev, E. , 161 Steele, G. A. , 157 Umari, P. , 161 Usoltseva, A. , 97, 147 Steiner, M. , 57 Stephan, O. , 101 Výprachtický, D. , 171 Steplewska, A. , 45 Valkeapaa, M. , 53 Stobinski, L. , 101 Vanecek, M. , 97 Stormer, H. , 77 Vengust, D. , 62, 157 Strle, J. , 157 Venukadasula, G. M. , 143 Su, D. , 158 Verberck, B. , 107 Su, D. S. , 170 Verveniotis, E. , 164 Suenaga, K. , 15, 18 Vijayaraghavan, A. , 164 Suga, H. , 61 Vilan, A. , 62 Sundaram, R. S. , 159 Sundqvist, B. , 89 Virsek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vyalikh, D. , 143 Svirko, O. , 149 Svirko, Y. P. , 113 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		
Stampfer, ; 33 Stampfer, C., 87 Ukraintsev, E., 163 Steele, G. A., 157 Umari, P., 161 Stefopoulos, A. A., 110 Steiner, M., 57 Stephan, O., 101 Steplewska, A., 45 Stobinski, L., 101 Stormer, H., 77 Stre, J., 157 Sun, D., 158 Sun, D. S., 170 Suenaga, K., 15, 18 Suga, H., 61 Sundaram, R. S., 159 Sundqvist, B., 89 Sundqvist, B., 89 Susi, T., 159 Sundy, J., 160 Svensson, J., 160 Svirko, O., 149 Svirko, Y. P., 113 Syabana Sumana Sumana Sumana Sumana Sumana, 182 Törmä, P., 146 Taioli, S., 161 Walter, M., 161 Ukraintsev, E., 163 Ukraintsev, E., 161 Usoltseva, H., 161 Vyprachtický, D., 171 Steplewska, A., 97, 147 Valkeapaa, M., 53 Valkeapaa, M., 53 Valkeapaa, M., 53 Valkeapaa, M., 97 Venukadasula, G. M., 143 Verberck, B., 107 Verveniotis, E., 164 Vilan, A., 62 Vijayaraghavan, A., 164 Vilan, A., 62 Viršek, M., 96 Viršek, M., 96 Viršek, M., 165 Volkov, A. P., 104 Vyalikh, D., 143 Vyalikh, D., 143 Vyalikh, D., 143 Vyalikh, D. V., 65 Valkeapaa, M., 53 Valter, M., 180 Valter, M., 180		
Stampfer, C. , 87 Steele, G. A. , 157 Stefopoulos, A. A. , 110 Steiner, M. , 57 Stephan, O. , 101 Steplewska, A. , 45 Stobinski, L. , 101 Stormer, H. , 77 Strle, J. , 157 Sun, D. , 158 Sun, D. S. , 170 Sundaram, R. S. , 159 Sundqvist, B. , 89 Sundqvist, B. , 89 Susi, T. , 159 Svensson, J. , 160 Svirko, O. , 149 Svirko, Y. P. , 113 Steplewska, A. , 45 Valkeapaa, M. , 53 Valkeapaa, M. , 53 Valkeapaa, M. , 53 Valkeapaa, M. , 53 Valkeapaa, M. , 97 Vanecek, M. , 97 Venukadasula, G. M. , 143 Verberck, B. , 107 Verveniotis, E. , 164 Vijayaraghavan, A. , 164 Vijayaraghavan, A. , 164 Vilan, A. , 62 Viršek, M. , 96 Virsek, M. , 96 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Vyalikh, D. , 143 Vyalikh, D. , 143 Svjrko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Taioli, S. , 161 Walter, M. , 180		Uddin, M., 163
Steele, G. A. , 157 Umari, P. , 161 Stefopoulos, A. A. , 110 Usoltseva, A. , 97, 147 Steiner, M. , 57 Výprachtický, D. , 171 Stephan, O. , 101 Výprachtický, D. , 171 Steplewska, A. , 45 Valkeapaa, M. , 53 Stobinski, L. , 101 Vanecek, M. , 97 Stormer, H. , 77 Vengust, D. , 62, 157 Strle, J. , 157 Venukadasula, G. M. , 143 Su, D. , 158 Verberck, B. , 107 Su, D. S. , 170 Verveniotis, E. , 164 Suenaga, K. , 15, 18 Vijayaraghavan, A. , 164 Suga, H. , 61 Vilan, A. , 62 Sundaram, R. S. , 159 Viršek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. v. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		
Stefopoulos, A. A. , 110 Usoltseva, A. , 97, 147 Steiner, M. , 57 Výprachtický, D. , 171 Stephan, O. , 101 Výprachtický, D. , 171 Steplewska, A. , 45 Valkeapaa, M. , 53 Stobinski, L. , 101 Vanecek, M. , 97 Stormer, H. , 77 Vengust, D. , 62, 157 Strle, J. , 157 Venukadasula, G. M. , 143 Su, D. , 158 Verberck, B. , 107 Su, D. S. , 170 Verveniotis, E. , 164 Suenaga, K. , 15, 18 Vijayaraghavan, A. , 164 Suga, H. , 61 Vilan, A. , 62 Sundaram, R. S. , 159 Viršek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		
Steiner, M., 57 Stephan, O., 101 Výprachtický, D., 171 Steplewska, A., 45 Valkeapaa, M., 53 Stobinski, L., 101 Vanecek, M., 97 Stormer, H., 77 Vengust, D., 62, 157 Strle, J., 157 Venukadasula, G. M., 143 Su, D., 158 Verberck, B., 107 Su, D. S., 170 Verveniotis, E., 164 Suenaga, K., 15, 18 Vijayaraghavan, A., 164 Suga, H., 61 Vilan, A., 62 Sundaram, R. S., 159 Viršek, M., 96 Sundqvist, B., 89 Virsek, M., 165 Susi, T., 159 Volkov, A. P., 104 Svensson, J., 160 Vuković, T., 80 Svirko, O., 149 Vyalikh, D., 143 Svirko, Y. P., 113 Vyalikh, D. V., 65 Szabo, T., 161 Wågberg, T., 182 Törmä, P., 146 Wågberg, T., 39, 113 Taioli, S., 161 Walter, M., 180		
Stephan, O. , 101 Výprachtický, D. , 171 Steplewska, A. , 45 Valkeapaa, M. , 53 Stobinski, L. , 101 Vanecek, M. , 97 Stormer, H. , 77 Vengust, D. , 62, 157 Strle, J. , 157 Venukadasula, G. M. , 143 Su, D. , 158 Verberck, B. , 107 Su, D. S. , 170 Verveniotis, E. , 164 Suenaga, K. , 15, 18 Vijayaraghavan, A. , 164 Suga, H. , 61 Vilan, A. , 62 Sundaram, R. S. , 159 Viršek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		
Steplewska, A., 45 Valkeapaa, M., 53 Stobinski, L., 101 Vanecek, M., 97 Stormer, H., 77 Vengust, D., 62, 157 Strle, J., 157 Venukadasula, G. M., 143 Su, D., 158 Verberck, B., 107 Su, D. S., 170 Verveniotis, E., 164 Suenaga, K., 15, 18 Vijayaraghavan, A., 164 Suga, H., 61 Vilan, A., 62 Sundaram, R. S., 159 Viršek, M., 96 Sundqvist, B., 89 Virsek, M., 165 Susi, T., 159 Volkov, A. P., 104 Svensson, J., 160 Vuković, T., 80 Svirko, O., 149 Vyalikh, D., 143 Svirko, Y. P., 113 Vyalikh, D. V., 65 Szabo, T., 161 Wågberg, T., 182 Törmä, P., 146 Wågberg, T., 39, 113 Taioli, S., 161 Walter, M., 180		Výprachtický, D. , 171
Stobinski, L., 101 Vanecek, M., 97 Stormer, H., 77 Vengust, D., 62, 157 Strle, J., 157 Venukadasula, G. M., 143 Su, D., 158 Verberck, B., 107 Su, D. S., 170 Verveniotis, E., 164 Suenaga, K., 15, 18 Vijayaraghavan, A., 164 Suga, H., 61 Vilan, A., 62 Sundaram, R. S., 159 Viršek, M., 96 Sundqvist, B., 89 Virsek, M., 165 Susi, T., 159 Volkov, A. P., 104 Svensson, J., 160 Vuković, T., 80 Svirko, O., 149 Vyalikh, D., 143 Svirko, Y. P., 113 Vyalikh, D. V., 65 Szabo, T., 161 Wågberg, T., 182 Törmä, P., 146 Wågberg, T., 39, 113 Taioli, S., 161 Walter, M., 180		Valkeapaa, M. , 53
Stormer, H., 77 Vengust, D., 62, 157 Strle, J., 157 Venukadasula, G. M., 143 Su, D., 158 Verberck, B., 107 Su, D. S., 170 Verveniotis, E., 164 Suenaga, K., 15, 18 Vijayaraghavan, A., 164 Suga, H., 61 Vilan, A., 62 Sundaram, R. S., 159 Viršek, M., 96 Sundqvist, B., 89 Virsek, M., 165 Susi, T., 159 Volkov, A. P., 104 Svensson, J., 160 Vuković, T., 80 Svirko, O., 149 Vyalikh, D., 143 Svirko, Y. P., 113 Vyalikh, D. V., 65 Szabo, T., 161 Wågberg, T., 182 Törmä, P., 146 Wågberg, T., 39, 113 Taioli, S., 161 Walter, M., 180		Vanecek, M., 97
Su, D. , 158 Verberck, B. , 107 Su, D. S. , 170 Verveniotis, E. , 164 Suenaga, K. , 15, 18 Vijayaraghavan, A. , 164 Suga, H. , 61 Vilan, A. , 62 Sundaram, R. S. , 159 Viršek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		Vengust, D., 62, 157
Su, D. S. , 170 Verveniotis, E. , 164 Suenaga, K. , 15, 18 Vijayaraghavan, A. , 164 Suga, H. , 61 Vilan, A. , 62 Sundaram, R. S. , 159 Viršek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Strle, J., 157	Venukadasula, G. M., 143
Suenaga, K., 15, 18 Vijayaraghavan, A., 164 Suga, H., 61 Vilan, A., 62 Sundaram, R. S., 159 Viršek, M., 96 Sundqvist, B., 89 Virsek, M., 165 Susi, T., 159 Volkov, A. P., 104 Svensson, J., 160 Vuković, T., 80 Svirko, O., 149 Vyalikh, D., 143 Svirko, Y. P., 113 Vyalikh, D. V., 65 Szabo, T., 161 Wågberg, T., 182 Törmä, P., 146 Wågberg, T., 39, 113 Taioli, S., 161 Walter, M., 180	Su, D. , 158	Verberck, B., 107
Suga, H., 61 Vilan, A., 62 Sundaram, R. S., 159 Viršek, M., 96 Sundqvist, B., 89 Virsek, M., 165 Susi, T., 159 Volkov, A. P., 104 Svensson, J., 160 Vuković, T., 80 Svirko, O., 149 Vyalikh, D., 143 Svirko, Y. P., 113 Vyalikh, D. V., 65 Szabo, T., 161 Wågberg, T., 182 Törmä, P., 146 Wågberg, T., 39, 113 Taioli, S., 161 Walter, M., 180	Su, D. S., 170	Verveniotis, E., 164
Sundaram, R. S. , 159 Viršek, M. , 96 Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Suenaga, K., 15, 18	Vijayaraghavan, A., 164
Sundqvist, B. , 89 Virsek, M. , 165 Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Suga, H., 61	Vilan, A., 62
Susi, T. , 159 Volkov, A. P. , 104 Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Sundaram, R. S., 159	Viršek, M., 96
Svensson, J. , 160 Vuković, T. , 80 Svirko, O. , 149 Vyalikh, D. , 143 Svirko, Y. P. , 113 Vyalikh, D. V. , 65 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Sundqvist, B., 89	Virsek, M., 165
Svirko, O. , 149 Svirko, Y. P. , 113 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Susi, T., 159	
Svirko, O. , 149 Svirko, Y. P. , 113 Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Svensson, J., 160	Vuković, T., 80
Szabo, T. , 161 Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180		Vyalikh, D., 143
Wågberg, T. , 182 Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Svirko, Y. P., 113	Vyalikh, D. V., 65
Törmä, P. , 146 Wågberg, T. , 39, 113 Taioli, S. , 161 Walter, M. , 180	Szabo, T., 161	
Taioli, S., 161 Walter, M., 180		
Talyzin, A., 102, 161 Wang, J., 165		
	Talyzin, A., 102, 161	Wang, J., 165

Warner, J. H., 17, 49, 88, 151 Wassmann, T., 31, 166 Wees, B. v., 29 Wei, X., 77 Weiss, M., 166 Weitz, R. T., 100Welker, A. C., 167 Wenseleers, W., 48, 182 Whiteside, N., 138 Wick, P. , 136Williams, R., 135 Wirth, C. T. , 146Wirth, T., 167 Wirtz, L., 65 Woggon, U., 98, 109 Wolf, C., 163 Wu, Y. , $126\,$

Xiang, R., 168

Yakobson, B. I., 155 Yan, F., 169 Yan, H., 77 Yanagi, K., 15, 109, 112, **168** Yao, M., 113 Yitzchaik, S., 91 Yoo, J. S., 153 Yoshida, J., 54 Young, K., **169** Yudanov, N. F., 114

Zólyomi, V., 95, 98, 148, 152 Zak, A., 59, 62 Zaka, M., 88 Zakharova, I. B., 104 Zakhidov, A., 94, 135 Zamiry, S., 111 Zemek, J., 101 Zeng, A., 91 Zettl, A., 63, 78 Zhai, J. P., 129 Zhang, C., 167, 169 Zhang, J., 135, 158, 170 Zhang, M., 135 Zhang, Y., 63 Zhdanov, K., 147 Zheng, W., 158 Zhong, G. F., 169 Zhong, Z., 179 Zitti, E. D., 40, 145 Zolyomi, V., 170, 181 Zouni, A., 46, 162 Zsoldos, I., 99